• Title/Summary/Keyword: PZT Thin Films

Search Result 284, Processing Time 0.028 seconds

Structural and Electrical Properties of PZT(10/90)/PZT(90/10) Heterolayered Thin Films (PZT(10/90)/PZT(90/10) 이종층 박막의 구조적, 전기적 특성)

  • Lee, Seong-Gap;Kim, Gyeong-Tae;Bae, Seon-Gi;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.98-102
    • /
    • 2000
  • Ferroelectric PZT heterolayered thin films were fabricated by spin coating method on the Pt/Ti/SiO2/Si substrate using PZT(10/90) and PZT(90/10) m7etal alkoxide solutions. All PZT heterolayered films showed a homogeneous grain structures without presence of rosette structure. It can be assumed that the lower PZT layers played a role of nucleation site for the formation of the upper PZT layer. Pb-deficient PZT phase was formed at PZT/Pt interface due to the diffusion of Pb element into a Pt bottom electrode. The relative dielectric constant and the dielectric loss of the PZT-6 film were 567 and 3.6%, respectively. Increasing the number of coatings, remanent polarization and coercive field were decreased and the values of the PZT-6 heterolayered film were $7.18\muC/cm^2$ and 68.5kV/cm, respectively. Leakage current densities were increased with increasing the number of coatings, and the value of the PZT-4 film was about $7\times10-8A/cm^2$ at 0.05MV/cm.

  • PDF

Control of Grain Size of PZT Thin Film through Seed Layers (Seed Layer를 통한 PZT 박막의 결정립 크기 조절)

  • Kim, Tae-Ho;Kim, Ji-Young;Lee, In-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.273-278
    • /
    • 2000
  • In order to study effects of interface layers between PZT films and electrodes for MFM(Metal-Ferroelectric-Metal) structure capacitors, we have fabricated the capacitors with the Pt/PZT/interface-layer/Pt/$TiO_2/SiO_2/Si$ structure. $PT(PbTiO_3)$ interface layers were formed by sol-gel deposition and PbO, $ZrO_2$ and $TiO_2$ thin layers were deposited by reactive sputtering. $TiO_2$ interface layers result in the finest grains of PZT films compared to $PbO_2$ and $ZrO_2$ layers. On the other hand, PT interface layers result in improved morphology of PZT films and do not significantly change ferroelectric properties. It is also observed that seed layers at the middle and top of PZT films do not give significant effects on grain size but the PT seed layer at the interface between the bottom electrode and the PZT films results in the small grain size.

  • PDF

A study on the Etching and Dielectric Properties of PZT Thin Films with Excess Pb Contents (Pb 함량에 따른 PZT 박막의 식각 및 유전특성에 관한 연구)

  • Kim, Kyoung-Tae;Lee, Sung-Gap;Kim, Chang-Il;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.56-59
    • /
    • 2000
  • In this study, Ferroelectric $Pb(Zr_x,Ti_{1-x})O_3$(x=0.53) thin films were fabricated by the spin-coating on the Pt/Ti/$SiO_2$/Si substrate using the PZT metal alkoxide solutions with various excess Pb contents. Etching of PZT film was performed using planar inductively coupled Ar(20)$/Cl_2/BCl_3$ plasma. The etch rate of PZT film was 2450 ${\AA}/min$ at Ar(20)$/BCl_3$(80) gas mixing ratio and substrate temperature of $80^{\circ}C$. The leakage current densities of before etching and after etching PZT thin film were $6.25\times10^{-8}A/cm^2$, $8.74\times10^{-7}A/cm^2$ with electric field of 0.07MV/em, respectively.

  • PDF

Crystallization and In-plane Alignment Behavior of Pb(Zr, Ti)$O_3$ Films

  • Hwang, Kyu-Seog;Kim, Byung-Hoon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.191-194
    • /
    • 1997
  • Epitaxial Pb(Zr, Ti)O3(PZT) thin films were prepared on MgO(100) substrates by dipping-pyrolysis (DP) process using metal naphthenates as starting materials, and effects of pyrolysis and final heat-treatment conditions on the film's orientation were investigated. Solid-state epitaxial growth of PZT proceeds at lower temperature around 650℃ from the precursor pyrolyzed at 350 and 500℃. The in-plane alignment of the PZT films depends not only on the final heat-treatment temperature but on the pyrolysis conditions; the films, pyrolyzed at a higher temperature for a short time, i.e., at 500℃ for 10 min, exhibited stronger orientation after the same final heat treatment at 650°∼750℃. The PZT films with the strongest orientation were prepared by pyrolysis under the above conditions followed by final heat treatment at 750℃.

  • PDF

Properties of PZI Thin film on the Ru/RuO2 Electrode (Ru/RuO2전극에 성장한 PZT 박막의 특성에 관한 연구)

  • Kang, Hyun-Il;Choi, Jang-Hyun;Park, Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.865-869
    • /
    • 2002
  • The structural and electrical properties of PZT (lead zirconate titante) thin films grown on Pt (platinum) and Ru/Ru $O_2$(ruthenium/ruthenium oxide) electrodes were investigated. Thin films of PZT were deposited on a variety of electrodes using the rf-magnetron sputtering process. PZT films exhibited polycrystalline structure with strong PZT (100) plane and weak (211) plane for an optimizied Pt electrode and (100), (101), (111), (200), (210), (211) planes for Ru/Ru $O_2$. Switching polarization versus fatigue characteristic of Pt/Ti electrodes showed 20% degradation up to 1 $\times$ 10$_{9}$ cycles. No significant fatigue was observed in the films on Ru/Ru $O_2$ electrodes up to Ix109 test cycles. The results show that the new Ru/Ru $O_2$ bottom electrodes are expected to reduce the degradation of ferroelectric fatigue.

Preperation of PZT ferroelectric thin films by sol-gel processing (졸-겔법에 의한 강유전체 박막의 제작)

  • Lee, B.S.;Shin, T.H.;Cho, G.S.;Yuk, J.H.;You, D.H.;Kim, Y.H.;Kim, S.O.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1414-1416
    • /
    • 2001
  • Crack-free and homogeneous compact and epitaxial lead zirconate titanate(PZT) ferroelectric thin films with perovsikte structure have been prepared by sol-eel method. Tetrabutyl titanate, lead acetate and zirconium nitrate are used as raw materials. Glacial acetic acid is used as a catalyst. Ethylene glycol monoethyl ether is used as a solvent. The annealing temperatures of th thin films are 600~900$^{\circ}C$. The values of the remanent polarization Pr, and the coercive field $E_c$, of the PZT ceramic thin films are 46, 35 ${\mu}C/cm^2$ respectively.

  • PDF

Effects of (100) Orientation of LaNiO3 on the Growth and Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Films (LaNiO3의 (100)배향성이 Pb(Zr,Ti)O3 박막의 결정성장과 강유전성에 미치는 영향)

  • Park, Min-Seok;Seo, Byung-Joon;Yoo, Young-Bae;Moon, Byung-Kee;Son, Se-Mo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • Pb(Zr,Ti)O₃[PZT] thin films were prepared on a highly (100) oriented LaNiO₃[LNO] and a randomly oriented LNO by sol-gel process. The PZT thin films on a highly (100) oriented LNO show a high (100) crystal orientation (F=100 %), those on a randomly oriented LNO show a random crystal orientation (F=60 %). All the PZT layer have a flat and dense microstructure with large columnar grains and their grain size are 25 nm. In the ferroelectric curves at electric field of 40 kV/cm, a highly (100) oriented PZT/LNO samples show coercive field, E/sub c/=10 kV/cm and remanent polarization, P/sub r/=14.5 μC/㎠, while a randomly oriented PZT/LNO sample show E/sub c/=10 kV/cm and P/sub r/=5.4 μC/㎠.

Electrical Properties and Fabrication of Ferroelectric (PZT (PLD를 이용한 강유전체(PZT, PST, PT)/YBCO 박막 구조의 제작과 전기적인 특성에 관한 연구)

  • Kim, Jung-Hwan;Lee, Jae-Hyung;Moon, Byung-Moo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.541-545
    • /
    • 1998
  • (PZT, PST, PT)/ YBCO structured have been grown on single crystal $LaAlO_3$ using in-situ Nb:YAG pulsed laser deposition technique. The optimum conditions of fabrication for high quality films have been established under various oxygen pressure. TBCO was used as a metallic electrode for polarizing ferroelectric thin fillms. Lattice mismatch of these materials were found to be with in 3%. As a result XRD patterns and rocking curves, (PZT, PST, PT)/ YBCO multiayered thin films on $LaAlO_3$ substrates showed preferred orientation to c-axis. For invastigation on electrical properties of ferroelectric thin films, remanent polaiztion $P_r$ and coercive field $E_c$ were measured for three samples. At each optimum condition, they showed the values of P_r=60 \mu C/cm^2 and E_c=240kV/ cm for PT, 30\mu C/cm^2 and 105kV/cm for PZT, 1.5\mu C/cm^2$ and 15kV/cm for PST. Frequency dependence of dielectric properties of ferroelectric thin fillms was also investigated. As a result, it showed the frequency dependence was relatively small in the range of 10Hz~10kHz.

  • PDF

Structural and ferroelectric characteristics of sol-gel $Pb(Zr_{1-x}Ti_x)O_3$ thin films according to the sintering conditions and Zr/Ti mol% (소성 조건과 Zr/Ti 몰비에 따른 졸겔 $Pb(Zr_{1-x}Ti_x)O_3$ 박막의 구조 및 강유전 특성)

  • 김준한;윤현상;박정흠;장낙원;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.836-850
    • /
    • 1996
  • In this study, we have analyzed structural analysis and measured ferroelectric characteristics of PZT thin films prepared by sol gel process with different sintering conditions and different Zr/Ti mot%. When the Zr mot% of PZT thin film was increased, it was found that the remanent. polarization and coercive field were decreased and increased, respectively. Also, the maxium dielectric constant of PZT(50/50) thin film was 786.8. We got double hysteresis(anti-fcrroelectric) curve from PbZrO$_{3}$ thin film. As heating rate goes up, pyrochlore phase of PZT thin film was decreased and dielectric and ferroelectric characteristics were improved. As a result of variation of sintering temperature and time 500.deg. C-800.deg. C and 5 sec.-8 hours, respectively, we got optimal sintering temperature and time. The optimium sintering temperature and time of conventional furnace method and rapid thermal processing method were 650.deg. C-700.deg. C for 30-60 minutes and 700.deg. C/20 seconds-2 minutes, respectively.

  • PDF

The reduction of etching damage in lead-zirconate-titanate thin films using Inductively Coupled Plasma (Inductively Coupled Plasma를 이용한 lead-zirconate-titanate 박막의 식각 손상 개선)

  • Lim, Kyu-Tae;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.178-181
    • /
    • 2003
  • In this work, we etched PZT films with various additive gases ($O_2$ and Ar) in $Cl_2/CF_4$ plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in $O_2$ or Ar added $Cl_2/CF_4$ were compared, the value of remanent polarization in $O_2$ added $Cl_2/CF_4$ plasma is higher than that in Ar. added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added $Cl_2/CF_4$ gas having mixing ratio of 8/2 and 110 nm/min for 10% $O_2$ added to that same gas mixture. In order to recover the ferroelectic properties of the PZT thin films after etching, we annealed the etched PZT thin films at $550^{\circ}C$ in an $O_2$ atmosphere for 10 min. From the hysteresis curves, leakage current, retention property and switching polarization, the reduction of the etching damage and the recovery via the annealing was turned out to be more effective when $O_2$ was added to $Cl_2/CF_4$ than Ar. X-ray diffraction (XRD) showed that the structural damage was lower when $O_2$ was added to $Cl_2/CF_4$. And the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks.

  • PDF