• Title/Summary/Keyword: PZT Sensors

Search Result 157, Processing Time 0.028 seconds

Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm (Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가)

  • Choi Kee-Bong;Han Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

Identification of impact forces on composite structures using an inverse approach

  • Hu, Ning;Matsumoto, Satoshi;Nishi, Ryu;Fukunaga, Hisao
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.409-424
    • /
    • 2007
  • In this paper, an identification method of impact force is proposed for composite structures. In this method, the relation between force histories and strain responses is first formulated. The transfer matrix, which relates the strain responses of sensors and impact force information, is constructed from the finite element method (FEM). Based on this relation, an optimization model to minimize the difference between the measured strain responses and numerically evaluated strain responses is built up to obtain the impact force history. The identification of force history is performed by a modified least-squares method that imposes the penalty on the first-order derivative of the force history. Moreover, from the relation of strain responses and force history, an error vector indicating the force location is defined and used for the force location identification. The above theory has also been extended into the cases when using acceleration information instead of strain information. The validity of the present method has been verified through two experimental examples. The obtained results demonstrate that the present approach works very well, even when the internal damages in composites happen due to impact events. Moreover, this method can be used for the real-time health monitoring of composite structures.

Active control of the Self-excited Vibration of a Rotor System Supported by Tilting-Pad Gas Bearing (틸딩 패드 기체 베어링으로 지지된 로터 계 자려 진동의 능동제어)

  • Kwon, Tae-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • This paper presents an experimental study on active control of self-excited vibration for a high speed turbomachinery. In order to suppress the self-excited vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. The transfer characteristics from actuator inputs to shaft vibration outputs are experimentally investigated. In a tilting-pad gas bearing (TPGB), a shaft is supported by the pressurized air film. Four gap sensors were used to measure the vibration of the shaft and PID was used in the feedback control of the shaft vibration. The experimental results show that the self-excited vibration of the rotor can be effectively suppressed if the PID controller gains are properly chosen. As a result we find that the feedback control is effective for suppressing the self-excited vibration of a rotor system using stack-type PZT actuators.

  • PDF

Thermo-piezoelectric $Si_3N_4$ cantilever array on n CMOS circuit for probe-based data storage using wafer-level transfer method (웨이퍼 본딩을 이용한 탐침형 정보 저장장치용 열-압전 켄틸레버 어레이)

  • Kim Young-Sik;Nam Hyo-Jin;Lee Caroline Sunyoung;Jin Won-Hyeog;Jang Seong.Soo;Cho Il-Joo;Bu Jong Uk
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.22-25
    • /
    • 2005
  • In this research, a wafar-level transfer method of cantilever array on a conventional CMOS circuit has been developed for high density probe-based data storage. The transferred cantilevers were silicon nitride ($Si_3N_4$) cantilevers integrated with poly silicon heaters and piezoelectric sensors, called thermo-piezoelectric $Si_3N_4$ cantilevers. In this process, we did not use a SOI wafer but a conventional p-type wafer for the fabrication of the thermo-piezoelectric $Si_3N_4$ cantilever arrays. Furthermore, we have developed a very simple transfer process, requiring only one step of cantilever transfer process for the integration of the CMOS wafer and cantilevers. Using this process, we have fabricated a single thermo-piezoelectric $Si_3N_4$ cantilever, and recorded 65nm data bits on a PMMA film and confirmed a charge signal at 5nm of cantilever deflection. And we have successfully applied this method to transfer 34 by 34 thermo-piezoelectric $Si_3N_4$ cantilever arrays on a CMOS wafer. We obtained reading signals from one of the cantilevers.

  • PDF

Thermo-Piezoelectric Read/Write Mechanisms for Probe-Based Data Storage

  • Nam, Hyo-Jin;Kim, Young-Sik;Lee, Sun-Yong;Jin, Won-Hyeog;Jang, Seong-Soo;Cho, Il-Joo;Bu, Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • In this paper, a thermo-piezoelectric mechanism with integrated heaters and piezoelectric sensors has been studied for low power probe-based data storage. Silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been developed to improve the uniformity of cantilevers. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. And, the $34\times34$ probe array integrated with CMOS circuits has been successfully developed by simple one-step bonding process. The process can simplify the process step and reduce tip wear using silicon nitride tip.

  • PDF

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.

Development of Multi-Axis Control Program for Long Range AFM Using an FPGA Module (FPGA 모듈을 이용한 Long Range AFM용 다축 제어 프로그램 개발)

  • Lee J.Y.;Eom T.B.;Kim J.W.;Kang C.S.;Kim J.A.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.289-290
    • /
    • 2006
  • In general, atomic force microscope (AFM) used for metrological purpose has measuring range less than a few hundred micrometers. We design and fabricate an AFM with long measuring range of $200mm{\times}200mm$ in X and Y axes. The whole stage system is composed of surface plate, global stage, microstage. By combining global stage and microstage, the fine and long movement can be provided. We measure the position of the stage and angular motions of the stage by laser interferometer. A piezoresistive type cantilever is used for compact and long term stability and a flexure structure with PZT and capacitive sensor is used for Z axis feedback control. Since the system is composed of various actuators and sensors, a real time control program is required for the implementation of AFM. Therefore, in this work, we designed a multi-axis control program using a FPGA module, which has various functions such as interferometer signal converting, PID control and data acquisition with triggering. The control program achieves a loop rate more than 500 kHz and will be applied for the measurement of grating pitch and step height.

  • PDF