• Title/Summary/Keyword: PWM switching method

Search Result 460, Processing Time 0.021 seconds

Maximum Boost Discrete PWM method of Z-Source Inverters (Z-소스 인버터의 최대승압 불연속 PWM 방법)

  • Kim, Seonghwan;Park, Janghyun;park, Taesik
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.166-169
    • /
    • 2017
  • In this paper, maximum boost discrete PWM(DPWM) method of Z-Source Inverter(ZSI) is proposed. In general, a DPWM method is used to reduce the switching losses of the inverters and increase the efficiencies. The maximum boost PWM method of Z-Source Inverters is combined with the DPWM method. The proposed Maximum boost DPWM of ZSI is analyzed and it shows how to reduce the switching losses of ZSI. An experimental system has been built and tested to verify the effectiveness of the proposed method.

Switching Noise Reduction for Compressor using Random PWM (Random PWM을 이용한 Compressor의 스위칭 소음 저감)

  • 양순배;김학원;조관열
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.688-691
    • /
    • 1999
  • Recently, it is increased to adopt inverter system to household electrical appliances, especially in ai conditioner and refrigerator. Inverter system is adopted for improving the efficiency. But Inverter system makes acoustic noise caused by switching frequency. In household electrical appliace, it is important to reduce acoustic noise. And in some cases it is possible to magnify the acoustic noise caused by switching, by system which may have different transfer characteristic. In this paper, random PWM method was adopted in inverter refrigerator using 8 bit microprocesso. We found useful PWM frequency and adoptation method.

  • PDF

A Novel PWM Method for Three-Leg Two-Phase Inverter Fed Two-Phase Induction Motor (2상 유도전동기 구동 2상 인버터를 위한 새로운 PWM제어방식 II - 3-레그 타입의 경우 -)

  • Jang Do-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.339-346
    • /
    • 2005
  • It is complex to realize the reference voltage vector by the space vector PWM method in three-leg two-phase inverter In this paper a new PWM technique for three-leg two-phase inverter fed two-phase induction motor is poroposed assuming that three-leg two-phase inverter is equivalent circuit for 'four-leg two-phase inverter with the connected two windings'. From assumption, six sectors are decreased to four sectors, and simple sinusoidal PWM method instead of SVPWM is applied to three-leg two-phase inverter. Also, the switching pattern to determine the switching periods at each sector is proposed. Practical verification of theoretical predictions is presented to confirm the capabilities of the new techniques.

Carrier Based Single-State PWM Technique for Minimizing Vector Errors in Multilevel Inverters

  • Nho, Nguyen Van;Hai, Quach Thanh;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.357-364
    • /
    • 2010
  • In this paper, a novel analysis of a carrier based PWM method for multilevel inverters is presented. The space vector PWM and carrier based PWM correlations in multilevel inverters are investigated in a nominal two-level switching diagram. The obtained results can be applied to design various carrier PWM techniques. In this paper, a carrier based single-state PWM technique, which reduces the switching number and optimizes the active voltage errors, is presented. This PWM technique can be advantageous if there are a large number of levels. The proposed method is mathematically formulated and demonstrated by simulations and experimental results.

Non-equal DC link Voltages in a Cascaded H-Bridge with a Selective Harmonic Mitigation-PWM Technique Based on the Fundamental Switching Frequency

  • Moeini, Amirhossein;Iman-Eini, Hossein;Najjar, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, the Selective Harmonic Mitigation-PWM (SHM-PWM) method is used in single-phase and three-phase Cascaded H-Bridge (CHB) inverters in order to fulfill different power quality standards such as EN 50160, CIGRE WG 36-05, IEC 61000-3-6 and IEC 61000-2-12. Non-equal DC link voltages are used to increase the degrees of freedom for the proposed SHM-PWM technique. In addition, it will be shown that the obtained solutions become continuous and without sudden changes. As a result, the look-up tables can be significantly reduced. The proposed three-phase modulation method can mitigate up to the 50th harmonic from the output voltage, while each switch has just one switching in a fundamental period. In other words, the switching frequency of the power switches are limited to 50 Hz, which is the lowest switching frequency that can be achieved in the multilevel converters, when the optimal selective harmonic mitigation method is employed. In single-phase mode, the proposed method can successfully mitigate harmonics up to the 50th, where the switching frequency is 150 Hz. Finally, the validity of the proposed method is verified by simulations and experiments on a 9-level CHB inverter.

A Novel Random PWM Technique with a Constant Switching Frequency Utilizing an Offset Voltage (옵셋 전압을 이용한 일정 스위칭 주파수의 Random PWM 기법)

  • Kim, Do-Kyeom;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • This study proposes a novel random pulse-width modulation (PWM) technique with a constant switching frequency utilizing a random offset voltage. The proposed PWM technique spreads switching harmonics by varying the position of an active voltage vector without a switching frequency variation. The implementation of the proposed PWM technique is simple because it does not require additional hardware and complex algorithm. The proposed random PWM technique is compared with the conventional PWM technique on the factors of harmonic spectrum, total harmonic distortion, and harmonic spread factor to confirm the harmonic spread effect. The validity of the proposed method is verified by simulations and experiments on a three-phase inverter drive system.

An Optimized PWM Switching Strategy for an Induction Motor Voltage Control (전압제어 유도 전동기를 위한 최적 PWM 스위칭 방법)

  • Han, Sang-Soo;Chu, Soon-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.922-930
    • /
    • 2009
  • An optimized PWM switching strategy for an induction motor voltage control is developed and demonstrated. Space vector modulation in voltage source inverter offers improved DC-bus utilization and reduced commutation losses and has been therefor recognized the preferred PWM method especially in case of digital implementation. An optimized PWM switching strategy for an induction motor voltage control consists of switching between the two active and one zero voltage vector by using the proposed optimal PWM algorithm. The preferred switching sequence is defined as a function of the modulation index and period of a carrier wave. The sequence is selected by using the inverter switching losses and the current ripple as the criteria. For low and medium power application, the experimental results indicate that good dynamic response and reduced harmonic distortion can be achieved by increasing switching frequency.

Performance Improvement of Zero Voltage Switching PWM Half Bridge DC/DC Converter Using Time Delay Control Method (시간 지연 제어를 이용한 영전압 스위칭 PWM 하프 브릿지 컨버터의 제어 성능 개선)

  • 강정일;정영석;이준영;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.85-89
    • /
    • 1998
  • A switching power stage is a very nonlinear system because it has two or more operation modes in one switching cycle. To model a switching power stage, the state space averaging method has been developed. Though it allows a unified treatment of a large variety of switching power stages, the model it yields is always very nonlinear. So, it is required to linearize the averaged model. But it is well known that a controller for a nonlinear plant designed by the linearization frequently fails in showing satisfactory control performance. Hence it is very natural to try to design a nonlinear controller for a switching power stage. In design of a switching power system, nonlinear control approaches such as adaptive control and fuzzy control have been widely studied so far. In this research, a recently developed control method, time delay control is briefly studied and a design example for a ZVS PWM half bridge converter is given. The performance of the time delay controller is compared to its conventional counterpart, PI controller by computer simulations.

  • PDF

Induction Motor Drives with Low Switching Acoustic Noise Based on the Two-Phase Modulated Random Lead-Lag PWM Scheme (2상 변조된 랜덤 Lead-Lag PWM기반의 저 스위칭 소음 유도모터 구동 시스템)

  • 위석오;정영국;임영철;양승학
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.151-164
    • /
    • 2003
  • In this paper, induction motor drives with low switching acoustic noise based on the 2 phase modulated RLL(Random Lead-Lag) PWM is proposed and implemented. The proposed switching method is much bettor than 3 phase modulated RLL-PWM from the standpoint of the broadening effect of the acoustic noise spectrum. Along with the randomization of PWM Pulses, SVM(Space Vector Modulation) is executed in the TMS320C31 DSP(Digital Signal Processor). To verify the validity of the proposed RPWM(Random PWM), the experimental study was tried. The experimental results show that the performance of the proposed method and the 3 phase center-aligned SVM / conventional RLL-PWM are nearly the same from the viewpoint of the constant v/f centrel. But, in case of the proposed 2 phase modulated RLL-PWM, the spectrum characteristics of the voltage and the switching acoustic noise are shown to have better broadening effect than 3 phase modulated one.

A Study on The U Control of Resonant Inverters (공진형 인버터의 PWM 제어에 관한 연구)

  • 유완식;조규민
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.17-20
    • /
    • 2000
  • Usually, in many applications, high frequency resonant inverters are used, and the PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) or PWM(Pulse Width Modulation) techniques are used to control the output power of resonant inverters. In this paper, a new switching scheme is proposed as a PWM control method. With the proposed method, it can be obtained that unity output displacement factor under the variable resonant frequency. The detail algorithm of the proposed PWM switching scheme and its charicteristics are discussed. And the validity of the proposed method is confirmed with the experimental results.

  • PDF