• Title/Summary/Keyword: PWM rectifier

Search Result 287, Processing Time 0.036 seconds

Boosting Inductor Distribution Type PWM Rectifier (승압인덕턴스 분산형 PWM 정류기)

  • Lee, Moo-Young;Kim, Woo-Hyun;Ma, Jin-Suck;Im, Sung-Un;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1940-1943
    • /
    • 1998
  • A new PWM rectifier which offers a unity power factor is proposed. The circuit has same inductance as the conventional boosting type PWM rectifier in powering mode, but the inductance is splitted to 2 part in freewheeling mode. So the period of freewheeling mode is shorter than that of conventional boosting type PWM rectifier, and discontinuous input current is obtained in wide duty range. Therefore the proposed PWM rectifier accomplishs a unity power factor in wide range of duty ratio and boosting factor. And the conventional boosting type PWM rectifier has poor power factor near the unity boosting ratio, the proposed PWM rectifier improves this problem. The mathmatical analysis are presented and experimental results are given.

  • PDF

A Study on the Single-Phase PWM Rectifier with Neutral Leg (중성점을 가진 단상 PWM 정류기에 관한 연구)

  • 최연옥;김평호;한엄용;이진섭;조금배
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.675-679
    • /
    • 1999
  • A single-phase PWM current source rectifier with a neutral leg is presented and throughly analyzed in this paper. This novel topology is implemented by adding an extra leg a step-down single phase PWM space vector modulation method to reduce the dc output voltage harmonics is proposed. The PWM pattern generation need a digital system. As compared with a conventional single-phase PWM rectifier, over 20% improvement of the total harmonics distortion in the output voltage can be obtained. Different SVM techniques are analyzed for this PWM rectifier and simulation result are presented.

  • PDF

A single-carrier comparison PWM for Voltage Control of Vienna Rectifier (단일 반송파를 이용한 비엔나 정류기의 전압 제어)

  • Yoon, Byung-Chul;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • In this paper, a new simple PWM method for Vienna rectifier is proposed. The previous SVPWM method for Vienna rectifier is very complex and difficult to implement. To solve these problems, a new single-carrier comparison PWM method for voltage control of Vienna rectifier is proposed. Because of using the only single carrier, implementation of the proposed PWM is very simple. In the proposed PWM method, carrier comparison parts of the PWM block is only changed from the 2 level PWM control block. The usefulness of the proposed PWM method is verified by the simulation and experiment.

Analysis on Voltage and Cost of Substation with PWM Rectifier in DC Traction Power Supply System (PWM 정류기를 적용한 직류급전시스템의 전압강하 및 비용 평가)

  • Kim, Joorak;Park, Kijun;Park, Chang-Reung;Choo, Eun-Sang;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.640-645
    • /
    • 2015
  • Near surface transit system has should be constructed as installation cost of light rail transit with elevated track. So, distance between two substations is longer than conventional system. The long feeding distance results in severe voltage drop. This paper proposes a PWM rectifier instead of diode rectifier. The PWM rectifier has some advantages. This is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper analyse on improved voltage profile and cost of substation with PWM rectifier. The analysis of voltage profile use PSIM, and the installation cost of substation with PWM rectifier is compared to substation with diode rectifier.

Carrier Comparison PWM for Voltage Control of Vienna Rectifier (비엔나 정류기의 전압제어를 위한 반송파 비교 PWM)

  • Yoon, Byung-Chul;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4561-4568
    • /
    • 2011
  • In this paper, carrier comparison PWM method for voltage control of Vienna rectifier is discussed. In general, in industrial and communications applications, the two-level rectifier is used. However, this two-level rectifier has the limit of high THD and low efficiency. So, the studies of three-level rectifier has been carried out so far, and the Vienna rectifier circuit is the representative. The space vector pulse width modulation(SVPWM) method is generally used for Vienna rectifier, in which voltage vectors and duration time are calculated from the voltage reference. However, this method require very sophisticated and complex calculations, so realizing this method by software is very difficult. To overcome this disadvantage, simple carrier comparison PWM method for Vienna rectifier is proposed which is modified from the carrier comparison method for 3 level inverter. Furthermore, to verify the usefulness of the Vienna rectifier carrier comparison PWM the simulation and experiment are carried out.

Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier (3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

A Fully Software-Controlled PWM Rectifier with Current Link (전류링크를 갖는 PWM 정류기의 전소프트웨어 제어)

  • Kwon, Bong-Hwan;Min, Byung-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.995-998
    • /
    • 1992
  • A fully software-controlled pulse-width modulatioed (PWM) rectifier with current link is presented. Line power factor is controlled, while maintaining dc current. The input fitter of the PWM rectifier is analyzed and its analysis, shows that unity power factor is achieved with lagging of the input current of the PWM rectifier with respect to the source voltage. The PWM technique is developed using a space vector modulation and is implementation is carried out with a minimal control hardware structure based on one 16-bit single-chip microcomputer. It is shown via experimental results that the proposed sheme gives good performance for the PWM rectifier with current link.

  • PDF

Design of Power Factor Correction High Efficiency PWM Single-Phase Rectifier (역률보상 고효율 PWM 단상 정류기의 설계)

  • Choi, Seong-Hun;Kim, In-Dong;Nho, Eui-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.540-548
    • /
    • 2007
  • The parer proposes a power factor correction high efficiency PWM single-phase rectifier. Its good characteristics such as simple PWM control, low switch stress, and low VAR rating of commutation circuits make the proposed rectifier very suitable for various unidirectional power applications. In addition, the proposed rectifier consists of three boost-converter-type IGBT modules with the switching devices located at the bottom leg of the rectifier scheme, which also enables the use of the same power supply in both control and gate driver, thus resulting in simple control and power circuit structure. The detailed principle of operation and experimental results are also included. In particular, the design guide line is also suggested to make the circuit design of the proposed rectifier easy and fast.

A Study on the Algorithm for Single Phase Control of IGBT PWM Rectifier (IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Park, Jae-Beom;Tae, Dong-Hyun;Kim, Seung-Jong;Song, Joong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • Recently, the use of transformer-less UPS has increased to improve the efficiency of UPS. However, transformer-less UPS is required in three-phase four-wire input IGBT PWM rectifier and the existing three-phase three-wire PFC algorithm cannot be applied in the three-phase four-wire system due to the neutral current problem of UPS input. To control the three-phase four-wire input IGBT PWM rectifier, there are two existing algorithms: 3D SVM and single phase control method. These two algorithms have advantages/disadvantages in controlling the rectifier. The single phase control method is unstable for controlling the rectifier and the 3D SVM method has a problem that must increase the L value of the input-side inductor considerably. Therefore, this paper proposes digital single phase control technology and another new algorithm considering the d-q control, to improve the characteristics of the existing control algorithm. In addition, this paper performed a simulation and experiment based on the proposed control algorithm. The simulation results showed that the proposed technology can control three-phase four-wire IGBT PWM rectifier in a stable manner and can also reduce the neutral current. The proposed algorithm is a useful tool for controlling the three-phase four-wire IGBT PWM rectifier.