• 제목/요약/키워드: PWM boost converter

검색결과 284건 처리시간 0.021초

주 스위치의 전도손실을 최소화한 ZVT 부스터 컨버터 (ZVT boost converter with minimizing conduction losses of the main switch)

  • 진기호;강안종;김태우;김학성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2003
  • A ZVT PWM Boost Converter is proposed to reduce current stresses and conduction losses of main switch in a conventional circuit. By attaching resonant inductor Lr1 in parallel with capacitor Cr, the resonant circulating current is diverted to the additional component and then the main switch is subjected to minimum current stresses same as those in their PWM counterparts. Moreover, the operation of the auxiliary switch in a half wave mode to prevent reverse resonant energy from freewheeling can be able to lessen the conduction losses. The operation principles of the proposed converters are analyzed using the PWM boost converter topology as an example. Theoretically analysis and experimental results verify the validity of the boost converter topology with the proposed circuit.

  • PDF

A New ZVS-PWM Full-Bridge Boost Converter

  • Baei, Mohammadjavad;Narimani, Mehdi;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.237-248
    • /
    • 2014
  • Pulse-width modulated (PWM) full-bridge boost converters are used in applications where the output voltage is considerably higher than the input voltage. Zero-voltage-switching (ZVS) is typically implemented in these converters. A new ZVS-PWM full-bridge converter is proposed in this paper. The proposed converter does not have any of the disadvantages associated with other converters of this type, including a complicated auxiliary circuit, increased current stresses in the main power switches, and load-dependent ZVS operation. The operation of the proposed converter, its steady-state characteristics, and its design are explained and examined. The feasibility of the converter is confirmed with results obtained from an experimental prototype.

개선된 영전류 PWM 부스트 컨버터 (Improved ZCS-PWM Boost Converter)

  • 안준연;최항석;유권종;조보형
    • 전력전자학회논문지
    • /
    • 제7권4호
    • /
    • pp.353-358
    • /
    • 2002
  • 이 논문에서는 개선된 영전류 부스트 컨버터를 제안한다. 이 컨버터는 공진으로 인한 순환 전류를 보조 스위치와 인덕터를 이용해 보조 회로에만 흐르도록 하여 주스위치의 부가적인 도통 손실을 제거한다. 제한된 컨버터의 동작모드에 대해 설명하겠다. 또한 공진 파라미터의 설계를 설명하겠다. 제안된 컨버터를 5kw, 40kHz로 제작하여 실험결과를 토대로 확인하겠다.

Dual 컨버터로 동작하는 새로운 ZCS PWM Boost Converter (A New ZCS PWM Boost Converter with operating Dual Converter)

  • 김태우;진기호;김학성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2002
  • A Novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter for reducing two rectifiers reverse recovery related losses Is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching(ZVS, ZCS) condition. The reverse recovery related switching losses and EMI problems of the proposed converter eliminates the reverse recovery current of the freewheeling diode(D, Dl) by adding the resonant inductor Lr, in series with the switch S2. The voltage and current stresses of the components are similar to those in its conventional hard switching counterpats. As mentioned above, the characteristics are verified through experimental results.

  • PDF

Time Domain Based Digital Controller for Buck-Boost Converter

  • Vijayalakshmi, S.;Sree Renga Raja, T.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1551-1561
    • /
    • 2014
  • Design, Simulation and experimental analysis of closed loop time domain based Discrete PWM buck-boost converter are described. To improve the transient response and dynamic stability of the proposed converter, Discrete PID controller is the most preferable one. Discrete controller does not require any precise analytical model of the system to be controlled. The control system of the converter is designed using digital PWM technique. The proposed controller improves the dynamic performance of the buck-boost converter by achieving a robust output voltage against load disturbances, input voltage variations and changes in circuit components. The converter is designed through simulation using MATLAB/Simulink and performance parameters are also measured. The discrete controller is implemented, and design goal is achieved and the same is verified against theoretical calculation using LabVIEW.

스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계 (A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit)

  • 최현칠
    • 전력전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.149-158
    • /
    • 2006
  • 본 논문에서는 기존에 널리 사용되는 펄스폭 변조 (Pulse width modulation : PWM) 방식의 컨버터와 공진형 컨버터의 장점을 활용하고 단점을 보완할 수 있는 새로운 형태의 영전류 천이형 (Zero current transition : ZCT) 부우스트 컨버터를 제안한다. 제안한 회로는 기존의 PWM 부우스트 컨버터에 보조회로를 추가하여 주 스위치와 출력 다이오드의 스위칭 천이 순간에만 소프트 스위칭 조건을 제공함으로써 전체적인 동작은 기존의 부우스트 컨버터와 크게 차이가 없도록 하였다. 아울러, 보조회로에서의 부가적인 손실 역시 존재하지 않으므로 해서 고효율이 가능하게 된다. 본 논문에서는 제안한 회로의 동작을 분석하고 이를 바탕으로, 보조 회로의 소자값 결정에 도움이 되는 설계방식을 제공한다. 또한, 실험을 통하여 제안한 회로의 동작 원리 및 유용성을 검증하였다.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber

  • Ogura K.;Chandhaket S;Nagai S;Ahmed T;Nakaoka M
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge-resonant snubber which is used for power conditioner such as solar photovoltaic generation and fuel cell generation. The experimental results of boost chopper fed ZVS-PWM DC-DC converter are evaluated. In audition to its switching voltage and current waveforms, and the switching v-i trajectory of the power devices are discussed and compared with the conventional hard switching DC-DC converter treated here. The temperature performance of IGBT module,, efficiency, and EMI noise characteristics of this ZVS-PWM DC-DC converter using IGBTs are measured and evaluated from an experimental point of view.

  • PDF

PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로 (A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication)

  • 김용욱;김래영;소재환;최기영
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

능동 클램프회로가 있는 영전압 PWM 방식을 이용한 DC-DC 승압형 컨버터 (A ZVS-PWM Active-Clamping DC/DC Boost Converter)

  • 김태우;김기주;김학성;안희욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.622-625
    • /
    • 1999
  • This paper introduces a novel zero-voltage switching (ZVS)) pulse width modulation (PWM) active clamping dc-to-dc boost converter. This technique presents ZVS commutation without additional voltage stress and a significant increase in the circulating reactive energy throughout the converter. Therefore, all of the losses for the switches are minimized, and high power density system can be realized. The characteristics are verified through simulation and experimental results.

  • PDF

개선된 영전류 PWM 부스트 컨버터 (Improved ZCS-PWM Boost Converter)

  • 안준연;최항석;유권종;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.382-385
    • /
    • 2002
  • In this paper, an improved ZCS-PWM boost converter is proposed to minimize conduction loss by flowing resonant current only through the auxiliary circuit. The operation principle of the proposed converter is explained and design procedure is established. Experimental results are presented to verify the theoretical analysis.

  • PDF