Small-molecule organic photovoltaic cells have recently attracted growing attention due to their potential for the low-cost fabrication of flexible and lightweight solar modules. The PVP/Ag nanoparticles were synthesized by the reaction of poly vinylpyrrolidone (PVP) and silver nitrate at $150^{\circ}C$. In the reaction, the size of the nanoparticles was controlled by relative mole fractions between PVP and Ag. The PVP/Ag nanoparticles with various sizes were then spin coated on the patterned ITO glass prior to the deposition of the PEDOT:PSS hole transport layer. The scattering of the incident light caused by these incorporated nanoparticles resulted in an increase in the path length of the light through the active layer and hence the enhancement of the light absorption. This scattering effect increased as the size of the nanoparticles increased, but it was offset by the decrease in total transmittance caused by the non-transparent nanoparticles. As a result, the maximum power conversion efficiency, 0.96% which was the value enhanced by 14% compared to the cell without incorporation of nanoparticles, was obtained when the mole fraction of PVP:Ag was 24:1 and the size of the nanoparticles was 20~40 nm.
Objectives This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. Methods Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. Results The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for $AgNO_3$ (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. Conclusions The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.
The transport of silver nanoparticles (AgNPs) was investigated through a column packed with sand. A series of column experiments were carried out to evaluate the effect of ionic strength (IS), pH, electrolyte type and clay mineral on mobility of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs). The deposition of PVP-AgNPs was increased with increasing solution ionic strength and decreasing pH. Furthermore, the depositon of PVP-AgNPs was affected by the electrolyte type (NaCl vs. NaNO3) and was shown to be greater at NaNO3 solution. Also, the transport of PVP-AgNPs was greatly increased after the pre-deposition of clay particles on sand. Our results suggest that various environmental factors can influence the mobility of PVP-AgNPs in soil-groundwater systems and should be carefully considered in assessing their environmental risks.
A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.
Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and $CaCl_2$ solutions) to DI conditions, but in much lower ionic strength (IS) with $CaCl_2$. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and $CaCl_2$ solutions.
올레핀/파라핀 분리 기술로 silver nanoparticles(AgNPs)를 운반체로 사용하여 보다 효과적으로 올레핀을 분리하는 고성능 올레핀 촉진수송 분리막을 제조하고자 하였다. 기존에 성능이 밝혀진 PVP/AgNPs/TCNQ 나노복합체 막에 추가적으로 할로겐 물질을 첨가하여 AgNPs의 표면을 더 양극화시킴으로써 성능을 향상시키고자 하였다. 제조한 용액을 TEM과 EDS로 분석해서 AgNPs의 형성과 iodine의 존재를 확인하였다. Propylene/propane 혼합기체의 분리 성능 실험을 통해 기존 PVP/AgNPs/TCNQ 나노복합체 분리막과 기체 분리 성능을 비교하였고, long-term stability 실험을 통해 분리막의 안정성을 조사하였다.
Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
Bulletin of the Korean Chemical Society
/
제34권10호
/
pp.2865-2870
/
2013
Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.
In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.
The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.
기존의 올레핀 운반체로 알려진 은 나노입자는 입자 표면에서 프로필렌 기체와 상호작용을 하여 올레핀 촉진수송이 이루어진다고 알려졌다. 그러나 은 나노입자가 공기 중에 쉽게 산화되어 표면에 생성된 산화은(AgO 또는 $Ag_2O$)의 효과일 것으로 예상되었다. 산화은의 효과를 규명하기 위해, 고분자 PVP에 AgO 또는 $Ag_2O$를 5 wt%로 넣고 분산시킨 후 전자수용체 TCNQ 또는 p-BQ를 0.005~0.02%까지 넣어 분리막을 제조하였다. 전자수용체가 첨가되면 산화은의 표면에 양극성화도 분산 정도가 향상될 것으로 기대하였고, 이는 기체투과 성능과 XPS 그리고 TEM에 의해 분리막의 특성이 확인되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.