• Title/Summary/Keyword: PVDF film sensor

Search Result 65, Processing Time 0.027 seconds

Analysis of Impact Acoustic Property of Apple Using Piezo-Polymer Film Sensor (고분자 압전 박막 센서를 이용한 사과의 충격 음파 특성 분석)

  • Kim, Man-Soo;Lee, Sang-Dae;Park, Jeong-Hak;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • In this study, the PVDF (polyvinylidene fluoride) piero-film sensor was applied to measure the internal quality of apple. The developed sensor detected the response signal through apple after mechanical impact on the surface of apple. The acoustical parameters at time domain such as rise time (RT), ring down count (RC), energy (EN), event duration (ED) and peak amplitude (PA) and acoustical parameter at frequency domain such as spectral density (SE) were analyzed. The size of waveform decreased as storage time of apple increased. The frequency at maximum magnitude was shifted to lower frequency band according to the storage time. The acoustical parameters showed strong relationship with storage time. The multiple linear regression equation was developed to estimate storage time of apple using the acoustical parameters at time domain and its coefficient of determination was 0.97. The internal quality of apple according to storage time is predictable using developed PVDF sensor and acoustical parameters defined in this study.

Distributed Flexible Tactile Sensor System Using Piezoelectric Film

  • Yoon, Myoung-Jong;Yu, Kee-Ho;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.4-61
    • /
    • 2001
  • This research is the development of a distributed flexible tactile sensor for service robots using PVDF (polyvinylidene fluoride) film for the detection of the contact state in real time. The tactile sensor which has 8$\times$8 taxels is fabricated using PVDF film and flexible circuitry. The proposed fabrication method is simple and easy to make the sensor in the laboratory without using any special equipment. Experimental results on static and dynamic properties are obtained. In order to investigate the properties of the sensor, the sensor output to the arbitrary forces and frequencies are measured using the shaker with the force sensor.

  • PDF

A study of Simultaneous Force and Temperature Sensing with PVDF Film (PVDF 필름을 이용한 힘과 온도 동시검지에 대한 연구)

  • Lee, Yong-Kuk;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.690-693
    • /
    • 2002
  • This paper is concerned on method of simultaneous force(stress) and temperature sensing with PVDF film. PVDF film has piezoelectric and pyroelectric properties. Therefore, it senses changes of stress and temperature. But it's output is affected with two properties. Using different medium in a sensing element, this problem is solved. Two structures induce different equations that its solutions are changes of stress and temperature. This method and result is applicable in skin sensor that has complexity of material and structure.

  • PDF

Development of a PVDF sensor for detecting over-load and impact on large-scale mechanical structures (대형 기계 구조물의 과부하 및 충격 측정을 위한 PVDF 센서 개발)

  • Kang, Dong-Bae;Ahn, Jung-Hwan;Kim, Gang-Yeon;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6399-6405
    • /
    • 2014
  • An external overload or impact is an important factor affecting the safety of large-scale structures. The proposal of this paper is the development of a system for detecting overload and impulse using a single PVDF film sensor. In large-scale structures, the load causes the structure to be deformed and the impulse generates vibration on the structure. Generally, low frequency deformation or bending of a structure is measured with a strain gauge and the high frequency vibration is detected by an accelerometer. On the other hand, a single sensor that can detect both deformation and vibration has not been developed. In this study, the development of a detection system integrated with a polyvinylidene fluoride (PVDF) film sensor, amplifier, and software was attempted to monitor deformation and impact through a single sensor. The system was verified by the possibility of detecting overload and impulse, and the two filtered signals of the PVDF were compared with a conventional strain gauge and an accelerometer.

A STUDY ON PIEZOELECTRIC PROPERTIES OF PVDF AND ITS COPOLYMERS

  • Ansari, Mohd.Zahid;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.584-589
    • /
    • 2007
  • Polyvinylidene fluoride (PVDF) is a type of electroactive polymer which shows significant shape change when exposed to electric field. PVDF is generally used as a film sensor in non-destructive evaluation (NDE) of materials. In this study, however, its properties relevant to film actuator are considered. Since most of the electromechanical applications that use PVDF and its copolymers as actuators use their piezoelectric properties, only the piezoelectric properties of PVDF are discussed here. These properties depend mainly on the degree of crystallinity of PVDF. Available data from recent research publications are used to simulate the response of a PVDF bimorph beam on the application of electric field, by a commercial finite element analysis package ANSYS. Finally, the factors that affect mechanical behavior of PVDF bimorph beam are discussed.

  • PDF

Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization (다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현)

  • 유정규;김지철;김승조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

Development of a Weight in Motion sensor using Piezo Film (피에조 필름을 이용한 축중감지기 개발)

  • Yang, Hui-Sun;Park, Yon-Kyu;Kang, Dae-Im;Kim, Am-Kee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.262-267
    • /
    • 2000
  • This paper describes a weight in motion(WIM) sensor to measure the weight of a vehicle in motion. The main sensing element of the WIM sensor is the PVDF(Polyvinylidene fluoride) film that shows rapid response to an external excitation. Due to the property of rapid response, it is possible to measure the weight of a vehicle in motion with high speed. In the development of the WIM sensor, the dominant target value was the uniformity of the sensor. To increase the uniformity, We employed shrinkable tube made of rubber to enhance the uniformity, and performed the rolling of the brass tube repeatedly. The uniformity of the sensor was examined experimentally. It was comparable to that of a WIM sensor of the MSI which was the benchmark of this development. This paper also describes the mechanical modeling of the sensor and the suitable charge amplifier for the sensor.

  • PDF

Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film (PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

Poly(vinylidene fluoride) Piezoelectric Film Characteristics by Poling Conditions for Distributed Tactile Sensor (분포형 촉각센서를 위한 압전성 폴리(비닐리덴 플루오라이드) 필름의 극화 특성)

  • Lee Kyungsub;Kim Dongouk;Kim Hyungtae;Jung Kwangmok;Choi Hyoukryeol;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.361-366
    • /
    • 2004
  • The poling characteristics of PVDF (poly(vinylidene fluoride)) film was investigated by measuring the electric voltage generated by the external load for the distributed tactile sensor applications. The poling conditions for the PVDF films were controlled by changing temperature and electric field, and the resulting crystal structure of the $\beta$-phase crystal was confirmed by FT-IR, DSC, and XRD experiments. The $\beta$-phase crystal was increased with the poling temperature and poling voltage, and subsequently the permittivity of the Poled PVDF films was increased. Finally, the prototype tactile sensor was tested by a 8 $\times$ 8 may circuit exhibiting high voltage signal for the highly poled PVDF films.

Distributed Flexible Tactile Sensor (분포형 유연촉각센서)

  • 유기호;윤명종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.