Browse > Article

Poly(vinylidene fluoride) Piezoelectric Film Characteristics by Poling Conditions for Distributed Tactile Sensor  

Lee Kyungsub (Department of Polymer Science and Engineering, Sungkyunkwan University)
Kim Dongouk (Department of Polymer Science and Engineering, Sungkyunkwan University)
Kim Hyungtae (Department Mechanical Engineering, Sungkyunkwan University)
Jung Kwangmok (Department Mechanical Engineering, Sungkyunkwan University)
Choi Hyoukryeol (Department Mechanical Engineering, Sungkyunkwan University)
Nam Jae-Do (Department of Polymer Science and Engineering, Sungkyunkwan University)
Publication Information
Polymer(Korea) / v.28, no.5, 2004 , pp. 361-366 More about this Journal
Abstract
The poling characteristics of PVDF (poly(vinylidene fluoride)) film was investigated by measuring the electric voltage generated by the external load for the distributed tactile sensor applications. The poling conditions for the PVDF films were controlled by changing temperature and electric field, and the resulting crystal structure of the $\beta$-phase crystal was confirmed by FT-IR, DSC, and XRD experiments. The $\beta$-phase crystal was increased with the poling temperature and poling voltage, and subsequently the permittivity of the Poled PVDF films was increased. Finally, the prototype tactile sensor was tested by a 8 $\times$ 8 may circuit exhibiting high voltage signal for the highly poled PVDF films.
Keywords
dielectric constant; piezoelectricity; PVDF; tactile sensor;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. G. Cady, Piezoelectricity, McGraw-Hill, New York, 1946
2 M. Murayama, J. Polym. Sci., Polym. Phys. Ed., 13, 929 (1975)   DOI
3 M. Date, Polym. J., 8, 60 (1976)   DOI   ScienceOn
4 J. X. Wen, Jpn. J. Appl. Phys., 23, 1434 (1986)   DOI
5 G. T. Davis and J. E. Mckinney, J. Appl. Phys., 49, 4998 (1978)   DOI   ScienceOn
6 D. C. Lee and K. S. Park, Polymer (Korea), 16, 631 (1992)
7 H. Kawai, Jpn. J. Appl. Phys., 8, 975 (1969)   DOI
8 S. Tasaka and S. Miyata, Ferroelectrics, 32, 17 (1981)   DOI   ScienceOn
9 B. K. Choi and S. H. Park, Polymer(Korea), 26, 179 (2002)
10 E. W. Aslaksen, J. Chem. Phys., 57, 2358 (1972)   DOI
11 Y. Wada and R. Hayakawa, Ferroelectrics, 32, 115 (1981)   DOI   ScienceOn
12 E. Fatuzzo and W. J. Merz, Ferroelectricity, North Holland Pub, Co., Amsterdam, 1967
13 E. Fukada, Ultrasonics, 6, 229 (1968)
14 M. G. Broadhurst et al., J. Appl. Phys., 49, 4992 (1978)   DOI   ScienceOn
15 B. S. Kim, J. Y. Lee, and P. S. Porter, Polym. Eng. Sci., 38, 1359 (1998)   DOI   ScienceOn
16 M. Tamura, S. Magiwara, S. Matsumoto, and N. Ono, J. Appl. Phys., 48, 513 (1977)   DOI   ScienceOn
17 T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashima, and M. Data, J. Appl. Phys., 23, 1434 (1986)
18 M. J. Yoon, D. K. Kwon, G. H. Yu, and S. C. Lee, Proc. Inter. Conf. on Control, Automation and Systems, 1827-1830, 17-21, October (2001)
19 I. H. Park, Polymer(Korea), 26, 227 (2002)
20 B. C. Kim et al., Polymer(Korea), 26, 462 (2002)
21 T. T. Wang, J. M. Herbert, and A. M. Glass, The Applications of Ferroelectric Polymers, Blackie, Glasgow and London, 1988
22 E. Fukada, J. Phys. Soc, Jpn., 10, 149 (1955)   DOI
23 F. I. Mopsik and M. G. Broadhurst, J. Appl. Phys., 46, 4204 (1975)   DOI   ScienceOn