• Title/Summary/Keyword: PVDF blends

Search Result 13, Processing Time 0.024 seconds

Physical and Optical Properties of PMMA/PVDF Blends (PMMA/PVDF 화합물의 물성 및 광학적 성질)

  • 김병철;최춘기;한상필;윤근병;정명영
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.462-467
    • /
    • 2002
  • Blends of polymethylmethacrylate (PMMA) with polyvinylidenefluoride (PVDF) were prepared by melt mixing and investigated for optical waveguide devices by using hot embossing process. The glass transition temperatures ($T_g$) of the blends were decreased with increasing PVDF contents. However, the crystalline of PMMA/PVDF blends was not appeared by DSC and XRD due to miscibility between PMMA and PVDF. Shear viscosities and refractive indices of the blends were decreased with increasing PVDF contents. Optical transmittances and absorption losses of the blends were improved with increasing PVDF contents. This is due to a decreasing of polarizability of molecules by fluorine molecule in the PVDF.

Microphase Separation and Crystallization in Binary Blends Consisting of Poly (methyl methacrylate)-block-Polystyrene Copolymer and Poly (vinylidene fluoride) (폴리(메틸 메타크릴레이트)-폴리스티렌 이종 블록 공중합체/폴리(비닐리덴 플루오라이드) 블렌드의 미세 상분리와 결정화)

  • 김지선;이광희;조성무;류두열;김진곤
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.509-518
    • /
    • 2004
  • Microdomain structures and crystallization behavior of the binary blends consisting of an asymmetric block copolymer and a homopolymer were investigated using small-angle X-ray scattering (SAXS), optical micro scope (OM) and differential scanning calorimetry (DSC). Poly(methyl methacrylate)-block-polystyrene block copolymer (PMMA-b-PS) (weight fraction of PMMA =0.53) was mixed with low molecular weight poly(vinylidene fluoride) (PVDF). As the PVDF concentration was increased, the morphological change from a lamellar to a cylindrical structure occurred. The crystallization of PVDF significantly disturbed the orientation of the pre-existing microdomain structure, resulting in a poorly ordered morphology. In the blends, PVDF exhibited unique crystallization behavior due to the PMMA block which is preferentially miscible to PVDF and the space constraint imposed by the microdomains.

Morphology and Crystallization in Mixtures of Poly(methyl methacrylate)-Poly(pentafluorostyrene)-Poly(methyl methacrylate) Triblock Copolymer and Poly(vinylidene fluoride)

  • Kim, Geon-Seok;Kang, Min-Sung;Choi, Mi-Ju;Kwon, Yong-Ku;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.757-762
    • /
    • 2009
  • The micro domain structures and crystallization behavior of the binary blends of poly(methyl methacrylate)-b-poly(pentafluorostyrene)-b-poly(methyl methacrylate) (PMMA-PPFS-PMMA) triblock copolymer with a low molecular weight poly(vinylidene fluoride) (PVDF) were investigated by small-angle X-ray scattering (SAXS), small-angle light scattering (SALS), transmission electron microscopy (TEM), optical microscopy, and differential scanning calorimetry (DSC). A symmetric, PMMA-PPFS-PMMA triblock copolymer with a PPFS weight fraction of 33% was blended with PVDF in N,N-dimethylacetamide (DMAc). In the wide range of PVDF concentration between 10.0 and 30.0 wt%, PVDF was completely incorporated within the PMMA micro domains of PMMA-PPFS-PMMA without further phase separation on a micrometer scale. The addition of PVDF altered the phase morphology of PMMA-PPFS-PMMA from well-defined lamellar to disordered. The crystallization of PVDF significantly disturbed the domain structure of PMMA-PPFS-PMMA in the blends, resulting in a poorly-ordered morphology. PVDF displayed unique crystallization behavior as a result of the space constraints imposed by the domain structure of PMMA-PPFS-PMMA. The pre-existing microdomain structures restricted the lamellar orientation and favored a random arrangement of lamellar crystallites.

Effect of Spinodal Phase Separation and Phase Dissolution on a Succeeding Crystallization in P(VDF/TrFE)/PBA Blends (P(VDF/TrFE)/PBA 블렌드의 스피노달 상분리 및 상용해가 결정화거동에 미치는 영향)

  • 김갑진;이종순
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.207-210
    • /
    • 2002
  • PVDF는 측쇄에 C=O기를 갖는 고분자인 PMMA와 PVAc와의 블렌드 및 주쇄에 C=O기를 갖는 poly(1,4-butylene adipate) (PBA)와의 블렌드에서 PVDF의 융점보다 상당히 높은 온도에서 LCST거동을 보이고 있음이 알려져 있다. 그런데 PVDF/PMMA와 PVDF/PVAC 블렌드계에서는 LCST가 고분자의 열분해온도와 유사하여 LCST거동을 실험적으로 관찰하기 어려웠다. 그런데 PVDF/PBA 블렌드계에서는 실험적으로 측정할 수 있을 정도로 LCST가 낮아지긴 하였지만 PBA의 열분해를 완전히 배제하기엔 아직도 높은 온도이다.[1] (중략)

  • PDF

Phase Behavior, Crystallization, and Curie transition in Blends of Poly(Vinylidene Fluoride-co-Trifluoroethylene) and Poly(1,4-butylene adipate)

  • Kim, Kap-Jin;Thein Kyu
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.54-57
    • /
    • 1998
  • Recently, Manley's group published several papers on the blend of PVDF and poly(1, 4-butylene adipate) (PBA) chosen as a model system of somicrystallineisemicrystalline polymer blend.[1-4]. This blend system has several advantages over the other PVDF/semicrystalline polymer blends.(omitted)

  • PDF

The Effect of an External Electric Field on Phase Separation, Phase Dissolution, and Isothermal Crystallization Behavior of Poly(vinylidene fluoride)/Poly(1,4-butylene adipate) Blends

  • Kim, Kap-Jin;Lee, Jong-Soon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.7-8
    • /
    • 2003
  • Since PVDF/poly(1,4-butylene adipate) blend shows much lower LCST curve compared with PVDF/PMMA blend, the PVDF/PBA blend can be a good candidate for investigating the effect of the electric field on the phase separation and dissolution behavior of an electro-active polymer and electro-inactive polymer blend. (omitted)

  • PDF

Phase Separation Behavior of the Blends of PVDF and Carbonyl-containing Polymers in the Presence of an External Electric Field (PVDF와 카르보닐기 함유 고분자 블렌드의 전장하에서의 상거동)

  • 김갑진;이종순;최은화
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.317-318
    • /
    • 2003
  • 전기활성고분자인 poly(vinylidene fluoride)(이하 PVDF로 약기)와 전기비활성 고분자와의 혼화성블렌드에서 외부전장이 이 블렌드의 상분리거동에 미치는 영향을 조사하기에 적합한 전기비활성고분자를 찾은 결과 측쇄에 C=O기를 갖는 poly(ethyl methacrylate)(이하 PEMA)와 주쇄에 C=O기를 갖는 poly(1,4-butylene adipate)(이하 PBA로 약기)가 좋은 후보 고분자로 사용가능함을 보였다. 측쇄에 C=O기를 갖는 고분자인 PMMA와 PVDF와의 블렌드에서 PVDF의 융점보다 상당히 높은 온도인 35$0^{\circ}C$ 이상의 온도에서 lower critical solution temperature (이하 LCST로 약기) 거동을 보이는 것으로 알려져 있기 때문에 [1] 실제로 이들 블렌드계에서 열분해를 배제하면서 LSCT거동을 실험적으로 관찰하기는 불가능하다. (중략)

  • PDF

Miscibility and Phase Separation Behavior of P(VDF-co-HFP) and Poly(vinyl methyl ketone) Blends (P(VDF-co-HFP)와 poly(vinyl methyl ketone) 블렌드물의 혼화성 및 상분리 거동)

  • 김영호;홍성돈;김갑진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.319-320
    • /
    • 2003
  • 압전성과 초전성을 나타내는 고분자인 poly(vinylidene fluoride)(PVDF)는 poly(methyl methacrylate), poly(vinyl acetate), 및 Poly(vinyl methyl ketone)(PVMK) 등과 블렌딩하면 혼화성(miscibility)이 있다. 이들 블렌드물들을 용융온도 이상으로 승온시키면 낮은 온도에서는 균일상으로 존재하지만, 온도가 계속 증가하면 상분리되어 LCST(lower critical solution temperature)를 나타낸다[1]. 이러한 승온에 의한 상분리 거동에서 외부전장을 가하면 전기활성 고분자인 PVDF에 영향을 주어 상분리 거동이 변화될 것으로 예산된다. (중략)

  • PDF

Phase separation Behavior of P(VDF-co-HFP)/PBA and P (VDF-co-HFP)/P(BA-co-BS) Blends (P(VDF-co-HFP)/PBA 및 P(VDF-co-HFP)/P(BA-co-Bs) 블렌드의 상분리 거동)

  • 홍성돈;김영호;김갑진
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.193-194
    • /
    • 2003
  • 전기활성 고분자인 poly(vinylidene fluoride)(PVDF)를 전기 비활성 고분자와 블렌드시키는 경우 어떤 블렌드계에서는 용융 온도 이상에서 LCST(lower critical solution temperature) 상분리 거동을 나타내는데[1,2], 이때 외부 전장을 가해주면 이들의 상분리 거동에 영향을 미칠 수 있다[3]. PVDF와 블렌딩시켰을 때 LCST 상분리 거동을 나타내는 고분자로는 poly(methyl methacrylate), poly(ethyl methacrylate), poly(1,4-butylene adipate) (PBA) 등이 있다[l,3]. (중략)

  • PDF

Surface Mophology of Blends Containing Poly(vinylidene fluoride) on the Basis of Atomic Force Microscopy (원자력간 현미경을 이용한 Poly(vinylidene fluoride)계 고분자 블렌드의 표면 모폴로지 연구)

  • Lee, Won-Ki;Park, Chan-Young;Cho, Won-Jei;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.2 no.1
    • /
    • pp.18-22
    • /
    • 2001
  • Surface morphology of [poly(vinylidene fluoride)/poly(methyl methacrylate)] (PVDF/PMMA) was investigated on the basis of atomic force microscopy and differential scanning calorimeter measurements. The surface of (PMMA/PVDF) and (H14-PMMA/PVDF) blend films was fully composed with PVDF crystals. Although the difference of surface free energy between PMMA and PVDF is increased with increasing carboxyl group content in PMMA, however, in the case of (H24-PMMA/PVDF) blend film surface, the existence of aggregated H-PMMA was observed. It was found that the degree of surface enrichment of the blend is more affected by the magnitude of intermolecular interaction than the surface free energy difference, Besides, the introduction of carboxyl group for miscible (PVDF/PMMA) blend decreased the miscibility in the blend.

  • PDF