• 제목/요약/키워드: PV systems

검색결과 601건 처리시간 0.025초

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

미션 프로파일을 고려한 단상 5-레벨 태양광 NPC 인버터의 전력 반도체 소자 수명 분석 (Lifetime Evaluation of Power Devices of Single-Phase 5-Level NPC Inverters Considering Mission Profile of PV Systems)

  • 류태림;최의민
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.221-227
    • /
    • 2022
  • The reliability improvement of PV systems is an important factor in reducing the cost of PV energy because it is closely related to the annual energy production as well as the maintenance cost of PV systems. The reliability of PV inverters plays a key role in the reliability of PV systems because it is regarded as one of the most reliable critical parts of PV systems. The lifetime evaluation of PV inverters considering the mission profile in the design phase plays an important role in reliability design to ensure the required lifetime of PV inverters. In this paper, the lifetime of representative single-phase T-type and I-type NPC inverters are comparatively evaluated by considering the mission profile of a PV system recorded at Iza, Spain. Furthermore, the effect of the pulse width modulation methods on the lifetime is also discussed. The lifetime evaluation of PV inverters is performed at the component-level first and then the system level by considering all power devices.

EMTP형 시뮬레이터를 이용한 태양광발전시스템 모의 방법 (Simulation Method of Photovoltaic Generation Systems using EMTP Type Simulators)

  • 박민원;유인근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권6호
    • /
    • pp.303-308
    • /
    • 2005
  • As the cost of photovoltaic(PV) generation systems continues to decrease, utility interactive systems are becoming more economically viable. Furthermore, increases in consumer awareness correspond to a willingness to pay a premium price for clean electrical energy generated using renewable energy resources. Especially, PV generation systems, in particular, is undergoing a rapid expansion-showing an industrial growth of approximately 40$\%$ per year in the worldwide, as PV cell and systems technology improve new markets become increasingly accessible. This has resulted in an increased demand for the simulation scheme and operational technologies of utility interactive PV devices and systems. The simulation schemes that can be applied to the utility interactive PV generation systems readily and cheaply under various conditions considering the sort of solar cell, the capacity of systems and the converter system as well are strongly expected and emphasized among researchers. So far, authors have been introducing the simulation method of PV generation systems with several papers. In this paper, authors introduce the simulation way of PV generation systems using EMTP type simulators; EMTP/ATP, EMTDC/PSCAD, RTDS, with each examples. And, by connecting the voltage amplifier to the RTDS a novel simulation method which is extremely close to the real condition of PV generation system is also introduced.

Smoothing Output Power Variations of Isolated Utility Connected Multiple PV Systems by Coordinated Control

  • Datta, Manoj;Senjyu, Tomonobu;Yona, Atsushi;Sekine, Hideomi;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.320-333
    • /
    • 2009
  • A Photovoltaic (PV) system's power output varies with the change of climate. Frequency deviations, tie line voltage swings are caused by the varying PV power when large PV power from several PV systems is fed in the utility. In this paper, to overcome these problems, a simple coordinated control method for smoothing the variations of combined PV power from multiple PV systems is proposed. Here, output power command is formed in two steps: central and local. Fuzzy control is used to produce the central smoothing output power command considering insolation, variance of insolation and absolute average of frequency deviation. In local step, a simple coordination is kept between the central power command and the local power commands by producing a common tuning factor. Power converters are used to achieve the same output power as local command power employing PI control law for each of the PV generation systems. The proposed method is compared with the method where conventional Maximum Power Point Tracking (MPPT) control is used for each of the PV systems. Simulation results show that the proposed method is effective for smoothing the output power variations and feasible to reduce the frequency deviations of the power utility.

A Study on the Evaluation Algorithm for Performance Improvement in PV Modules

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Jong-yong;Oh, Seung-Taek;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1356-1362
    • /
    • 2015
  • The location of PV systems in distribution system has been increased as one of countermeasure for global environmental issues. As the operation efficiency of PV systems is getting decreased year by year due to the aging phenomenon and maintenance problems, the optimal algorithm for state diagnosis in PV systems is required in order to improve operation performance in PV systems. The existing output prediction algorithms considering various parameters and conditions of PV modules could have complicated calculation process and then their results may have a possibility of significant prediction error. To solve these problems, this paper proposes an optimal prediction algorithm of PV system by using least square methods of linear regression analysis. And also, this paper presents a performance evaluation algorithm in PV modules based on the proposed optimal prediction algorithm of PV system. The simulation results show that the proposed algorithm is a practical tool of the state diagnosis for performance improvement in PV systems.

3kW급 계통연계형 태양광발전시스템의 성능특성 평가분석 (Performance Analysis and Evaluation of 3kW Grid-Connected PV Systems)

  • 소정훈;정영석;유권종;최주엽;최익
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권8호
    • /
    • pp.509-516
    • /
    • 2004
  • The concerns of distributed generations including photovoltaic(PV) system have been increased around the world since PV system is becoming widespread as a clean and gentle energy source for earth. In the future high density grid-connected PV systems will be interconnected with distribution network. As a result, the stability and long-term reliability of PV systems have become more important issues in this area. Grid-connected PV systems have been installed and monitored at field demonstration test center(FDTC) and also data acquisition system(DAS) has been constructed for measuring and analyzing performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV system has been evaluated and analyzed for component perspective (PV array and power conditioning system) and global perspective (system efficiency, capacity factor, and electrical power energy) by field test and loss factors of PV system.

A Matlab/Simulink-Based PV array-Supercapacitor Model Employing SimPowerSystem and Stateflow Tool Box

  • Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.18-29
    • /
    • 2014
  • This paper proposes the integration of photovoltaic (PV) and energy storage systems for sustained power generation. In this proposed system, whenever the PV system cannot completely meet load demands, the super capacitor provides power to meet the remaining load. A power management strategy is designed for the proposed system to manage power flows between PV array systems and supercapacitors (SC). The main task of this study was to design PV systems with storage strategies including MPPT with direct control and an advanced DC-link controller and to analyze dynamic model proposed for a PV-SC hybrid power generation system. In this paper, the simulation models for the hybrid energy system are developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow tool. This is the key innovative contribution of the research paper. The system performances are verified by carrying out simulation studies using practical load demand profile and real weather data.

중국 티베트 지역의 100kWp급 태양광발전시스템 성능분석 (Performance Analysis of 100kWp Photovoltaics System in Tibet)

  • 김석기;최봉하;박수억;송진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.284-287
    • /
    • 2007
  • This paper presents the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea. The economical analysis has shown that with the current prices, investment in a grid connected PV systems is generally profitable

  • PDF

BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석 (Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation)

  • 이민형;이인복;하태환;김락우;여욱현;이상연;박관용;김준규
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.

Analysis of IEC 61727 Photovoltaic (PV) systems Characteristics of the utility interface

  • Lee, Jeong Hyeon;Yoon, Yong Ho;Kim, Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.90-95
    • /
    • 2015
  • This paper describes IEC 61727 standard of Photovoltaic (PV) systems -Characteristics of the utility interface. IEC 61727 standard tests include utility compatibility and personnel safety and equipment protection of PV inverter performance functions. Especially utility compatibility part includes test items of 1) voltage, current and frequency, 2) normal voltage operating range, 3) flicker, 4) DC injection, 5) normal frequency operating range, 6) harmonics and 7) waveform distortion, 8) power factor of PV inverter. Also personnel safety and equipment protection part includes test items 1)loss of utility voltage, 2)over/under voltage and frequency, 3)Islanding protection, 4)response to utility recovery, 5)earthing, 6)short circuit protection, 7)Isolation and switching of PV inverter. In this paper, each item of IEC 61727 standard test is studied and analyzed and finally full tested by PV inverter performance function.