• Title/Summary/Keyword: PV power

Search Result 1,501, Processing Time 0.026 seconds

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

Improved Global Maximum Power Point Tracking Method Based on Voltage Interval for PV Array under Partially Shaded Conditions

  • Ding, Kun;Wang, Xiang;Zhai, Quan-Xin;Xu, Jun-Wei;Zhang, Jing-Wei;Liu, Hai-Hao
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.722-732
    • /
    • 2014
  • The power-voltage (P-V) curve of photovoltaic (PV) arrays connected in parallel to bypass diodes would have several local maximum power points (LMPP) under partial shading conditions (PSC). Conventional maximum power point tracking (MPPT) methods fail to search for the global maximum power point (MPP) because the searched peak point may remain at the LMPP on the P-V curve under PSC. This study proposes an improved MPPT algorithm to ensure that PV arrays operate at global maximum power point (GMPP) under PSC. The proposed algorithm is based on a critical study and a series of observations of PV characteristics under PSC. Results show the regularity of voltage interval between LMPPs. The algorithm has the advantages of rapidly reaching GMPP, maintaining stability, and recovering GMPP quickly when the operating condition changes. Simulation and experimental results demonstrate the feasibility of the proposed algorithm.

Optimum Control Period and Perturbation Voltage for PV-MPPT Controller Considering Real Wether Condition (실제 날씨를 고려한 PV-MPPT 제어기의 최적 주기와 변량전압)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Solar power generation systems require maximum power point tracking (MPPT) control to operate PV panels at their maximum power point (MPP). Most conventional MPPT algorithms are based on the slope-tracking concept. A typical slope-tracking method is the perturb and observe (P&O) algorithm. The P&O algorithm measures the current and voltage of a PV panel to find the operating point of the voltage at which the calculated power is maximized. However, the measurement error of the sensor causes irregularity in the calculation of the generated power and voltage control. This irregularity leads to the problem of not finding the correct MPP operating point. In this work, the power output of a PV panel based on the P&O algorithm is simulated by considering the insolation profiles from typical clear and cloudy weather conditions and the errors of current and voltage sensors. Simulation analysis suggests the optimal control period and perturbation voltage of MPPT to maximize its target efficiency under real weather conditions with sensor tolerance.

MPPT Strategy to Improve Photovoltaic Power Generation Efficiency in Partial Shadows (부분 음영에서의 태양광 발전 효율을 높이기 위한 MPPT 전략)

  • Heo, Cheol-Young;Kim, Yong-Rae;Lee, Young-Kwoun;Lee, Dong-Yun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In order to increase the power generation efficiency of the photovoltaic system, a new algorithm that can follow the maximum power point of the photovoltaic power generation system having nonlinear output characteristics is proposed. Conventional maximum power point tracking (MPPT) algorithms such as Perturbation and Observation (P&O) and InCond (Increment and Conductance) schemes can not find the global maximum power point at a plurality of pole points in the unmatched state of unbalanced PV modules. However, even if the global maximum power point is found at a plurality of pole points, the global maximum power that can not be the real maximum power by the photovoltaic generation system. In order to solve this problem, a few PV companies propose installing several small PV inverters instead of if big one. However, since this will require additional costs, we herein propose a Multi-MPPT system using individual 3-point MPPT to track true MPPT at a plurality of pole points in the unmatched state of unbalanced PV modules.

Bidirectional Flyback Converter Design Methodology for Differential Power Processing Modules in PV Applications (PV 시스템의 차동 전력 조절기 모듈용 양방향 플라이백 컨버터 설계 방법)

  • Park, Seungbin;Kim, Mina;Jeong, Hoejeong;Kim, Taewon;Kim, Katherine A.;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • A bidirectional flyback converter is a suitable topology for use in a PV-to-bus differential power processing (DPP) module for PV applications due to its electrical isolation capability, bidirectional power transfer, high step-up ratio, and simple circuit structure. However, the bidirectional flyback converter design should consider the effect of the output-side power switch utilized for bidirectional operation compared with that of the conventional flyback converter. This study presents the structure and design methodology of the bidirectional flyback converter for a PV DPP module. Magnetizing inductance is designed by calculating the power loss of converter components within the rated load range under the discontinuous conduction mode, which is unaffected by the reverse recovery characteristics of the anti-parallel diode of the output-side power switch. The validity of the proposed design methodology is verified using a 25 W bidirectional flyback converter prototype. The operational principles and the performance of the DPP operation are verified using practical DPP modules consisting of bidirectional flyback converters implemented according to the proposed design methodology.

Load Control between PV Power Plants and Diesel Generators

  • Mohamed Khalil Abdalla MohamedAli;AISHA HASSAN ABDALLA HASHIM;OTHMAN KHALIFA
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.33-40
    • /
    • 2024
  • Introducing renewable energy sources, such as wind and photovoltaic arrays, in microgrids that supply remote regions with electricity represents a significant leap in electricity generation. Combining photovoltaic panels and diesel engines is one of the most common ways to supply electricity to rural communities. Such hybrid systems can reduce the cost of electricity generation in these remote power systems because they use free energy to balance the power generated by diesel engines. However, the combination of renewable energy sources and diesel engines tends to complicate the sizing and control of the entire system due to the intermittent nature of renewable energy sources. This study sought to investigate this issue in depth. It proposes a robust hybrid controller that can be used to facilitate optimum power sharing between a PV power source and diesel generators based on the dynamics of the available PV energy at any given time. The study also describes a hybrid PV-diesel power plant's essential functional parts that produce electricity for a microgrid using a renewable energy source. Power control needs to be adjusted to reduce the cost of power generation.

FPGA based POS MPPT control for a small scale charging system of PV-nickel metal hydride battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Geun;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1306-1307
    • /
    • 2011
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

  • PDF

FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Guen;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

A Study on the Customer Voltage Characteristic of Distribution System with Large Scale PV (대용량 태양광발전이 연계된 배전계통의 수용가 전압 특성해석에 관한 연구)

  • Kim, Byung-Ki;Ryu, Kyung-Sang;Kim, Chan-Hyeok;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper deals with the analysis of the customer voltage characteristic in distribution system interconnected with large scale PV system. There would be many power quality issues which are caused by reverse power flow of PV system interconnected with distribution system. In order to analyze the effect of PV system on the customer voltage, detailed modeling method of distribution system and modified modelling method of PV system are proposed using PSCAD/EMTDC in this paper. So far, less than dozens KW of PV system can be simulated with the existing modelling method. Therefore, a new modeling method which can simulate the large scale PV system is proposed by considering the relationship equation on the phase and voltage in the current control algorithm. From the simulation result of proposed modelling method, it is confirmed that an optimal operation method in distribution system is suggested by analyzing the effect of PV system on customer voltage.