• Title/Summary/Keyword: PV Cell

Search Result 502, Processing Time 0.042 seconds

The Analysis on Operation Characteristics of Bypass Diode in PV Module (태양전지 모듈의 바이패스 다이오드 동작 특성 분석)

  • Kim, Seung-Tae;Kang, Gi-Hwan;Park, Chi-Hong;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.25-26
    • /
    • 2007
  • In this paper, we studied the shadow effect which is one of environmental cause for hot-spot phenomenon on PV by considering electrical effects. We fabricated PV module in case of existence and nonexistence of bypass diode. And maximum output power and thermal distribution was analyzed by shadowing solar cell by increase of 5%. From the results, the PV module's(without bypass diode) maximum output power was reduced by hot-spot gradually. But the PV module's(with bypass diode) maximum output power had no reduction by operation of bypass diode, though solar cell is shadowed more than 60%. The solar cell temperature of PV module(without bypass diode) was $10^{\circ}C$ higher compared to module's one. This is a reason for shortening of durability of PV module.

  • PDF

Analysis on Operational Characteristics of PV-SPE System by a Novel MPPT Control (PV-SPE 시스템을 위한 새로운 MPPT 제어의 운전특성 분석에 관한 연구)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.121-124
    • /
    • 2006
  • In the newly developed control method, the current flowing into SPE cell is the only one considerable factor. So, the structure of control circuit becomes simple and the manufacturing cost of the control device decreases. In conventional power comparison MPPT control method however, a voltage and current coming out from PV cell should be feedbacked to chase maximum power point at every moment. Then, the structure of control circuit becomes so complex and the risk of control failure is much higher than the novel MPPT control method. Therefore, PV generation system by a novel MPPT control method is especially operated much more safely in case of a huge system, because the voltage coming out from PV-cell is not needed to be feedbacked. In this paper, the PV-SPR system was actually manufactured based on the simulation model of PSCAD/EMTDC program and the results tested were shown. Authors are sure that it is the most useful method to maximize power from PV to SPE with only a feedback of SPE input current.

  • PDF

A Study on the Relationship Between Photovoltaic Module Surface Temperature and Photovoltaic Power Using Real Experiment (실물 실험을 통한 태양광 모듈의 표면온도와 태양광 발전량과의 관계에 대한 연구)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • PV module power is calculated on PV module surface temperature adjustment by irradiation on the summer and autumn in NOCT(Nominal Operating Cell Temperature) conditions. The summer and autumn periods were selected because of large variation in outdoor air temperature and irradiation. This study was performed to understand relationship between PV module surface temperature and photovoltaic power using field measurement. As a results, it was determined that the amount of irradiation was proportional to the amount of photovoltaic power in the field measurement. However, it was also identified that the PV power generation decreased by increased PV module surface temperatures due to irradiation.

A study on characteristic variation of solar cells for lanterns as a temperature change (정원등(lanterns)용 태양전지셀의 온도특성 변화연구)

  • Lee, Se-Hyun;Park, Chang-Yong;Cho, Mee-Ryoung;Shin, Sang-Wuk;Hwang, Myung-Keun;Yang, Seong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1199-1200
    • /
    • 2006
  • In this paper, I try to measure the electrical characteristics of PV cell for lanterns with solar simulator and simulated with PC1D software. I keep my eye on the characteristics variation of PV cell as a temperature change. Therefore, I try to increase a temperature of controlled block from $10^{\circ}C$ to $50^{\circ}C$ while measuring the PV cell. As a result, A variation caused by voltage have an effect on the efficacy of PV cell. Hence, it is an important variable when a designer plan to make a solar cell for lanterns.

  • PDF

A study on characteristic variation of solar cells for lanterns as a temperature change (정원등(lanterns)용 태양전지셀의 온도특성 변화연구)

  • Lee, Se-Hyun;Park, Chang-Yong;Cho, Mee-Ryoung;Shin, Sang-Wuk;Hwang, Myung-Keun;Yang, Seong-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.233-236
    • /
    • 2006
  • In this paper, I try to measure the electrical characteristics of PV cell for lanterns with solar simulator and simulated with PC1D software. 1 keep my eye on the characteristics variation of PV cell as a temperature change. Therefore, I try to increase a temperature of controlled block from $10^{\circ}C\;to\;50^{\circ}C$ while measuring the PV cell. As a result A variation caused by voltage have an effect on the efficacy of PV cell. Hence, it is an important variable when a designer plan to make a solar cell for lanterns.

  • PDF

Hybrid System of Solar Cell and Fuel Cell (태양광발전과 연료전지의 하이브리드 시스템)

  • Hwang, Jun-Won;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.568-573
    • /
    • 2009
  • Because of environmental crisis, researchers are seeking and developing a new, clean, safe and renewable energy. Solar cell energy and fuel cell energy have inestimable development potential. The paper introduces hybrid photovoltaic-fuel cell generation systems supplying a remote power load and hybrid system of solar cell and fuel cell considering the advantages of stable and sustainable energy from the economic point of view. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land us, is able to alleviate the heavy burden for large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime $CO_2$ emissions. In this paper shows the I-V characteristics of the solar module which are dependent on the power of the halogen lamp and the I-V characteristics of fuel cells which are connected in parallel. Also, it shows efficiency of the hybrid system.

Improved Photovoltaic MATLAB Modeling Accuracy by Adding Wind Speed Effect

  • An, Dong-Soon;Poudel, Prasis;Bae, Sang-Hyun;Park, Kyung-Woo;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Photovoltaic (PV) are generally modeled using mathematical equations that describe the PV system behavior. Most of the modeling approach is very simple in terms of that PV module temperature is calculated from nominal constant cell temperature such as ambient temperature and incoming solar irradiance. In this paper, we newly present MATLAB model particularly embedding the effect of wind speed to describe more accurate cell temperature. For analyses and validate purpose of the proposed model, solar power is obtained and compared with and without wind speed from the 50Wp PV module provided by vendor datasheet. In the simulation result, we found that power output of the module is increased to 0.37% in terms of cell temperature a degreed down when we consider the wind speed in the model. This result is well corresponded with the well-known fact that normal PV is 0.4% power changed by cell temperature a degree difference. Therefore it shows that our modeling method with wind speed is more appropriate than the methods without the wind speed effect.

The Development Measuring System of Temperature Effect to Produce Electric Power of Solar Cell

  • Sadmai, Ong-art
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.104-113
    • /
    • 2015
  • This paper focuses on a temperature effects on a PV panel which has been installed in Thailand. The main objective is cleaning PV panels and reduce temperature of PV panel by water injects from waterway and experimental results of PV power what it is difference. This project is designed by PLC control system which water injects and control PV temperature, In addition, this project consists of hardware and software such as water pump, water injection and PLC control has been automatically and it can be control system manually. The automatic control system is working when PV temperature rises up over 45 degree Celsius after that the pumping machine would inject water to the surface of PV panels and it must be stop when the PV panel temperature comes down less than 45 degree Celsius. The result of actual experimental found that the control system has been done correctly under specify condition. The experimental has been shown electrical data before and after water injects on PV system found that the electrical power a bit increases and The energy has been taken from PV panel less than energy consumption equipment of control system which taken to operate the water injecting system.

The Variation of Electrical Characteristics of PV Module due to Mechanical Stress (기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Kim, Kyung-Su;Yu, Gwon-Jong;Ahn, Hyung-Kuen;Han, Deuk-Young
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.

Analysis of the Effects of the Irradiation and Cell-Temperature on the Dynamic Responses of PV System with MPPT (태양광의 세기와 셀 온도가 최대전력 추종을 하는 태양광 발전의 동특성에 미치는 영향 분석)

  • Loc, Nguyen Khanh;Moon, Dae-Seong;Seo, Jae-Jin;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1142-1143
    • /
    • 2008
  • As well known, the maximum power point tracking (MPPT) is an important role in photovoltaic (PV) power systems. MPPT finds and maintains the operation of PV at the maximum power point when the irradiation and cell-temperature change. In this paper, the studied system includes a PV array, a Buck-Boost DC/DC converter, a DC/AC inverter and it is connected to the three phase power system. The solar array operates as a non-linear voltage source. The P&O algorithm with power feed-back is used to control the operating point of PV array at the maximum power point. The effects of irradiation and cell-temperature on the dynamic responses are also considered.

  • PDF