• Title/Summary/Keyword: PUSH Technology

Search Result 433, Processing Time 0.026 seconds

Analysis of EMG Activities and Driving Performance for Operating Four Types of Left Hand Control Devices (4가지 종류의 좌측 핸드 컨트롤 장치에 대한 사용자의 EMG 분석 및 운전 성능 평가)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.143-152
    • /
    • 2017
  • The main purpose of this research was to examine the EMG characteristics of driver's upper limb and driving performance for operating accelerator and brake pedal by using four types of left hand control devices(Push/Pull, Push/Right angle, Push/Rock, Push/Twist) during simulated driving. The persons with disabilities in the lower extremity have problems in operation of the vehicle because of functional impairments for controlling accelerator and brake pedal. Therefore, if hand control device is used for adaptive driving controls in persons with lower extremity loss, the disabled people could improve their quality of mobility life by driving a car. Twenty subjects were involved in this research to assess driving performance and EMG activities for operating accelerator and brake pedal by using four types of left hand controls in driving simulator. We measured EMG responses of six muscles(posterior deltoid, middle deltoid, biceps, triceps, extensor carpi radialis, and flexor carpi radialis) during pulling and pushing movement with four types of left hand controls for acceleration and braking. STISim Drive 3 program was used for evaluation test of four types of left hand control devices in straight lane course for time to reach target speed and brake reaction time. While operating the four types of left hand controls for acceleration, EMG activities of posterior deltoid in normal subjects were significantly increased(p < 0.05) compared to the disabled subjects. It was also found that EMG responses of triceps and posterior deltoid were significantly increased(p < 0.05) when using the Push/Right angle type than Push/Pull type. While operating the four types of left hand controls for braking, EMG activities of flexor carpi radialis and triceps in subjects with disability were significantly increased(p < 0.05) compared to the normal subjects. It was shown that muscle responses of posterior deltoid, middle deltoid and triceps were significantly increased when using the Push/Right angle type than Push/Rock type. Time to reach target speed and brake reaction time in subjects with disability was increased by 2.5% and 4.6% on average compared to normal subjects. The person with disabilities showed a tendency to relatively slow performance in acceleration at the straight lane course.

Current Concept of Biomimicry - Ecological Approach for Sustainable Development - (생태모방의 현재적 개념 - 지속가능한 발전을 위한 생태적 접근 -)

  • Bae, Haejin;Park, Eun Jin;Lee, Eunok
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • This study focused on defining concepts such as biology push (biology-based biomimicry) and technology pull (technology problem-based biomimicry) in the multidisciplinary field of ecological imitation and analyzing the status of related research and technology at the domestic and international levels. From an ecological point of view, biomimicry is defined as ecological mimicry in which ideas obtained through classification and investigation of principles of biology and ecology are applied to the concepts of engineering and technology. We also defined the biology push as the ecological imitation based on biological characteristics starting from an ecological viewpoint and technology pull as the ecological imitation based on technical problems starting from technical needs. Although biomimicry studies often focus on the technology development by finding stable and eco-friendly source materials from biological and ecological characteristics, we wanted to emphasize the unlimited potential of research of biomimicry that can begin with an idea based on biological and ecological characteristics. This study presents the need to develop the research and technology further based on the biological and ecological viewpoints that can contribute to future sustainable development.

A Comparison of Various Exercises for Scapular Stabilization (견갑골 안정화를 위한 다양한 운동의 비교연구)

  • Kim, Myungjin;Lee, Yujin;Kim, Jihyuk;Bae, Wonsik
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.3
    • /
    • pp.51-62
    • /
    • 2013
  • PURPOSE : This study of 20 healthy male subjects by applying various scapular stabilization exercise to compared Serratus anterior and lower trapezius is change in ultrasound images. METHOD : Thirty healthy subjects voluntarily participated in this study. Ultrasound imaging was recorded from the increasing the activity of Serratus anterior(SA) and Lower trapezius(LT) muscles using Push-up plus, Wall slide, Scapular plane shoulder elevation with resistance exercise. Thickness changes in the Serratus anterior(SA) and lower trapezius(LT) muscles between the relaxed and contracted states in the each exercises. To identify statistical significance, one-way ANOVA with repeated measures was used with the significance level of .05. RESULT : The results of this study were as follows : 1) There were statistically significant difference in thickness changes in the Serratus anterior(SA) and lower trapezius(LT) muscles between the relaxed and contracted states in the each exercises. 2) The Scapular plane shoulder elevation with resistance is more effective to Strengthening in the scapular stabilization muscles than Push up-plus and Wall slide. CONCLUSION : The Scapular plane shoulder elevation with resistance may be used to effectively that patient with various shoulder pain.

Switching Intention of Smart Appliance : A Perspective of the Push-Pull-Mooring Framework (스마트 가전의 전환의도에 영향을 미치는 요인에 관한 연구 : Push-Pull-Mooring의 관점)

  • Park, HyunSun;Kim, Sanghyun
    • Journal of Digital Convergence
    • /
    • v.16 no.2
    • /
    • pp.127-137
    • /
    • 2018
  • As the next generation technology, leading 4th industrial revolution has been progressed, the goods and services converged by the technology are being released in a market. The smart appliances among them attracts users' attentions as a key promising industry. Thus, this study investigates the factors that influence switching intention to smart appliances based on Push-Pull-Mooring framework. We collected 217 survey responses and formed structural equation modeling with AMOS 22.0. The results show that functional deprivation, money deprivation, alternative attractiveness had an effect on the switching intention to smart appliances. In addition, low switching cost is related to the relationship between external variables and switching intention. The results expect to provide useful information to the smart appliance-related companies.

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

A Study on the Push-based Distance Education System and Leveling Estimation Algorithm (Push 기반 원격교육 시스템과 수준별 문항평가 알고리즘에 관한 연구)

  • 김원영;김치수;김진수
    • Journal of Internet Computing and Services
    • /
    • v.2 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • An educational system using computers was first conceptualized by Dr. Donald Bitzer in the University of Illinois in the late 1950s. Since the PLATO system was developed in 1961, multilateral research were made for the last 30 years. Especially, the development of Internet and Information Technology has contributed to the advancement of the distance education system. This system has greatly changed the existing educational paradigm, As the result, new education system is being realized, This study suggests a distance education system based on ‘push’ technique, which is a means of active information transmission, In this system, the ‘push’ technique is combined with the existing distance education system. Through the combination, learning contents can be provided for learners without connecting the DB on the Internet. In addition, the process of getting new information is real-timed operation. Also, the treatment of item; and the algorithm of level-based item evaluation are devised in consideration of various levels of learners, so that evaluation of items appropriate to the levels of learners can be accomplished.

  • PDF

A Bidirectional Three-phase Push-pull Zero-Voltage Switching DC-DC Converter (양방향 3상 푸쉬풀 ZVS DC-DC 컨버터)

  • Kwon, Min-Ho;Han, Kook-In;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.403-411
    • /
    • 2013
  • This paper proposes an isolated bidirectional three-phase push-pull dc-dc converter for high power application such as eco-friendly vehicles, renewable energy systems, energy storage systems, and solid-state transformers. The proposed converter achieves ZVS turn-on of all switches and volume of passive components is small by an effect of three-phase interleaving. The proposed converter has identical switching pattern for both boost and buck mode, and therefore can provide seamless characteristic at the mode transition. A 3kW prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

Fast Tap-N-Drag (FTND) : Enhancing Panning for Web Browsing on Small Screen Devices Considering Panning Ratio and Direction (작은 화면에서의 인터넷 작업을 위한 효율적인 화면이동방법 제안 및 사용성 평가)

  • Choi, Eun-Jung;Kwon, Sung-Hyuk;Chung, Min-K.
    • IE interfaces
    • /
    • v.22 no.4
    • /
    • pp.347-358
    • /
    • 2009
  • Panning tasks caused by both a small screen and the lower resolution of handheld devices are known to decrease the usability of a mobile internet service. To solve this problem, we proposed FTND, an improved version of Tap-N-Drag widely used in various mobile web browsers. 30 participants performed the panning tasks with FTND embedded in combinations of 2 panning directions of Push Background user interface and Push Viewpoint user interface and 5 panning ratios of 100% (a panning ratio of Tap- N-Drag), 300%, 500%, 700%, and 900%. The usability of FTND was assessed by an objective performance and a subjective preference. The objective performance was measured by a task completion time, the number of clicks, and the number of pixels. The subjective preference was measured by satisfaction, accuracy and ease of use. Push Viewpoint user interface at the panning ratios of 300%, 500%, and 700% proved to be the most efficient way for panning tasks with small handheld devices when performing the task by using the right hand thumb.