• Title/Summary/Keyword: PUMP

Search Result 6,419, Processing Time 0.124 seconds

Analysis on Installation Conditions Survey and Improvement of Drain Pump in Air-Conditioner : Focusing on Changwon City (에어컨 배수펌프 설치 실태 및 개선방안 분석 - 창원시를 중심으로)

  • Kim, Sung-Sam
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.102-106
    • /
    • 2012
  • This paper was carried out to survey fire hazard and improvement at the drain pump in air-conditioners. Based on the results of analysis, the proposal of electrical accidents prevention and a construction improvement are as follows. A power connection of the drain pump has two types, an electrical outlet type and direct connection type at control board of air-conditioner. The electrical outlet types need a bulletin sign or education as malfunction of the drain pump include an additional accidents, current leakage and overflowing with water on the floor from breaker trip by exterior cause and breaker off by mistake of worker. On the other hand, the direct connection types prevent a power interruption as exterior cause, but it has some trouble, cut of ground cable and without protection device. Usually it doesn't work by electrician when air-conditioner and the drain pump power work. Therefore an education or countermeasures are recommended for not electrician. Generally malfunction of the drain pump causes accumulated materials into the tank. Even though the accumulated materials lead to an overheating and burning as failure of detector occur an idling, periodic inspection of the air-conditioner filter and the drain pump tank prevent the trouble.

A Study on the Design of Fuel Transfer Pumps Gear Part for the Aircraft (항공기용 연료이송펌프 기어부 설계에 관한 연구)

  • Lee, Jung-hoon;Kim, Joon-tae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • This paper discusses a series of procedures and results for designing the gear part of a fuel transfer pump for an aircraft, developed as an independent technology for the first time in Korea. A gear pump type is selected because the design requirements of the fuel transfer pump are met by a gear pump with a characteristics of less leakage inside than a vane pump with superior overall performance. The gear housing is designed with suitable clearance, considering the outer diameter of the gear, which is the main factor on which the flow can be determined. Additionally, the calculation of the required hydraulic and axial force for the motor to drive the fuel transfer pump was performed.

A New Analog Switch CMOS Charge Pump Circuit without Body Effect

  • Parnklang, Jirawath;Manusphrom, Ampual;Laowanichpong, Nut;Tongnoi, Narongchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.212-214
    • /
    • 2005
  • The charge-pump circuit which is used to generate higher voltage than the available supply voltage has wide applications such as the flash memory of EEPROM Because the demand for high voltage comes from physical mechanism such as the oxide tunneling, the required pumped voltage cannot be scaled as the power supply voltage is scaled. Therefore, an efficient charge-pump circuit that can achieve high voltage from the available low supply voltage is essential. A new Analog Switch p-well CMOS charge pump circuit without the MOS device body effect is processed. By improve the structure of the circuit's transistors to reduce the threshold voltage shift of the devices, the threshold voltage of the device is kept constant. So, the circuit electrical characteristics are higher output voltage within a shorter time than the conventional charge pump. The propose analog switch CMOS charge pump shows compatible performance of the ideal diode or Dickson charge pump.

  • PDF

A Study of the Influence of Groundwater Level on the System Performance of Open Loop Geothermal System (지하수 수위가 개방형 지열시스템 성능에 미치는 영향에 관한 연구)

  • Kim, Jinsang;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.3
    • /
    • pp.1-10
    • /
    • 2013
  • Open loop geothermal heat pumps have great potential where the groundwater resources are sufficient. Performance of open loop geothermal heat pump systems is considered higher than that of ground source heat pumps. Head and power calculation of submersible pumps, heat pump units, and piping are numerically based on regression data. Results shows that the system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system COPs. The highest achievable cooling system COPs become 6.34, 6.12, and 5.95 as the groundwater levels are 5m, 15m, and 25m. The highest heating system COPs also become 4.59, 4.37, and 4.20. Groundwater level and submersible pump selection greatly influence the system performance of open loop geothermal heat pumps. It needs to be analysed during the design process of open loop geothermal heat pump system, possibly with analysis tools that include wide range of pump product data.

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump (루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석)

  • Lee, Chan;Kil, Hyun-Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

Study on Flow Characteristics around Intakes within a Sump by PIV (PIV에 의한 흡입수조내 흡입관 주위의 유동특성에 관한 연구)

  • Choi, J.W.;Kim, J.H.;Nam, Cheong-Do;Kim, Y.T.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.563-569
    • /
    • 2001
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents, Hence, flow into the pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall and back-wall due to different clearances from back-wall to vertical in take pipe. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.

  • PDF

Simulation of Valveless Pump Using Pumping Chamber Connected to Elastic Tube (탄성 튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프의 수치해석)

  • Shin, Soo Jai;Chang, Cheong Bong;Sung, Hyung Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • A valveless pump consisting of a pumping chamber with an elastic tube was simulated using an immersed boundary method. The interaction between the motion of the elastic tube and the pumping chamber generated a net flow toward the outlet through a full cycle of the pump. The net flow rate of the valveless pump was examined by varying the stretching coefficient, bending coefficient, and aspect ratio of the elastic tube. Photographs of the fluid velocity vectors and the wave motions of the elastic tube were examined over one cycle of the pump to gain a better understanding of the mechanism underlying the valveless pump. The relationship between the gap in the elastic tube and the average flow rate of the pump was analyzed.

Evaluation of the Annual Performance of the Direct Expansion Vertical Closed-Loop Ground Source Heat Pump (직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Woo, Joung-Son;Baik, Young-Jin;Jang, Jea-Chul;Kim, Ji-Young;Ra, Ho-Sang
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.534-542
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed-loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As a result, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

  • PDF

Annual Performance Evaluation of Direct Expansion Vertical Closed-Loop Ground Source Heat Pump for Residential Application (주거용 직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.114-122
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed -loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As results, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.