• Title/Summary/Keyword: PTP-1B

Search Result 85, Processing Time 0.025 seconds

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

High-Throughput Screening for Novel Inhibitors of Protein-Tyrosine Phosphatase-1B

  • Lee, In-Ki;Son, Mi-Won;Jung, Mi-Young;Shin, Chang-Yell;Kim, Dong-Sung;Kim, Soon-Hoe;Yoo, Moo-Hi;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.243.2-244
    • /
    • 2002
  • Protein-tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic enzymes. which catalyze the dephosphorylation of phosphotyrosine residues in a variety of receptors and signaling molecules. Thirty subtypes of PTPs have been identified in human genomes. Among PTPs, PTP1 B has been suggested as a negative regulator of insulin signaling. Overexpression of this enzyme has been known as a cause of obesity and type II diabetes, so it is a target for drug discovery. (omitted)

  • PDF

Caulerpa okamurae ethanol extract improves the glucose metabolism and insulin sensitivity in vitro and in vivo (옥덩굴 에탄올 추출물의 당 대사 및 인슐린 민감성 개선효과)

  • Park, Chul-Min;Thakuri, Laxmi Sen;Rhyu, Dong-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.89-96
    • /
    • 2021
  • The aim of this study is to examine the effect of Caulerpa okamurae ethanol extract (COE) on glucose metabolism and insulin sensitivity as one of the drug targets for treatment of type2 diabetes. COE significantly inhibited protein tyrosine phosphatase (PTP1B) and dipeptidyl peptidase-IV (DPP-IV) enzyme activities in vitro assay. Also, COE significantly enhanced the glucose uptake and the expression of insulin receptor substrate-1 (IRS-1) and glucose transporter4 (GLUT4) proteins in 3T3-L1 adipocytes or zebrafish larvae compared with control. In dexamethasone-induced resistance model of L6 myotubes, the protein expression of insulin signaling and glucose uptake was effectively increased by the treatment of COE. In contrast, the elevated phosphorylation of IRS-1 Ser307 was normally suppressed by treatment of COE. However, COE had no effect on insulin secretion in pancreatic beta cells. Thus, our results suggest that COE improves the glucose metabolism and insulin sensitivity through the regulation of insulin signaling and GLUT4 protein in insulin's target cells and zebrafish larvae.

2D-QSAR and HQSAR on the Inhibition Activity of Protein Tyrosine Phosphatase 1B with Oleanolic Acid Analogues

  • Chung, Young-Ho;Jang, Seok-Chan;Kim, Sang-Jin;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.52-57
    • /
    • 2007
  • Quantitative structure-activity relationships (QSARs) on the inhibition activities by oleanolic acid analogues (1-19) as a potent inhibitor against protein tyrosine phosphatase-1B were studied quantitatively using 2D-QSAR and HQSAR methodologies. The inhibition activity was dependent on the variations of $R_{4-}$substituent, and as shown in 2D-QSAR model ($r^2=0.928$), it has a tendency to increase as the negative Randic Indice (RI) goes up. The size of the molecular fragments used in HQSAR varied from five to eight. The fragment distinctions had the best statistic value, whose predictability is $q^2=0.785$ and correlation coefficient is $r^2=0.970$, on condition of connections. From the atomic contribution maps, the factor that contributes to the inhibition activities is the $C_{15}{\sim}C_{17}$ bond in the D ring. From the analysis result of these two the models, the structural distinctions and descriptors that contribute to the inhibition activities were obtained.

Improvement of Leptin Resistance (렙틴 저항성의 개선)

  • Kim, Yong Woon
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.1
    • /
    • pp.4-9
    • /
    • 2013
  • Leptin, a 16-kDa cytokine, is secreted by adipose tissue in response to the surplus of fat store. Thereby, the brain is informed about the body's energy status. In the hypothalamus, leptin triggers specific neuronal subpopulations (e.g., POMC and NPY neurons) and activates several intracellular signaling events, including the JAK/STAT, MAPK, PI3K, and mTOR pathway, which eventually translates into decreased food intake and increased energy expenditure. Leptin signal is inhibited by a feedback inhibitory pathway mediated by SOCS3. PTP1B involves another inhibitory pathway of leptin. Leptin potently promotes fat mass loss and body weight reduction in lean subjects. However, it is not widely used in the clinical field because of leptin resistance, which is a common feature of obesity characterized by hyperleptinemia and the failure of exogenous leptin administration to provide therapeutic benefit in rodents and humans. The potential mechanisms of leptin resistance include the following: 1) increases in circulating leptin-binding proteins, 2) reduced transport of leptin across the blood-brain barrier, 3) decreased leptin receptor-B (LRB), and/or 4) the provocation of processes that diminish cellular leptin signaling (inflammation, endoplasmic reticulum stress, feedback inhibition, etc.). Thus, interference of the cellular mechanisms that attenuate leptin signaling improves leptin action in cells and animal models, suggesting the potential utility of these processes as points of therapeutic intervention. Various experimental trials and compounds that improve leptin resistance are introduced in this paper.

Synthesis of Biologically Active Chalcones and their Anti-inflammatory Effects

  • Jeon, Jae-Ho;Kim, Si-Jun;Kim, Cheol-Gi;Kim, Jin-Kyung;Jun, Jong-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.953-957
    • /
    • 2012
  • Chalcones have been reported to have various biological activities including antitumor, antiparasitic, antileishmanial, antioxidative, superoxide scavenging, antibacterial, and PTP1B activity. Due to the limited natural resources, we had to prepare sizable quantities of biologically active chalcones for bio-tests. Therefore, Claisen-Schmidt condensation between substituted acetophenones and corresponding aldehydes enabled us to prepare chalcones for inflammatory studies. Chalcones thus prepared showed significant suppression of nitric oxide (NO) production at $10{\mu}M$.

Biotransformation of Diterpenoids From Aralia continentalis Roots by the Genus Fusarium (곰팡이 Fusarium 속을 이용한 독활 뿌리 추출물로부터 디테르페노이드의 생물전환)

  • Keumok Moon;Seola Lee;Eunhye Jo;Areum Lee;Jaeho Cha
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.215-226
    • /
    • 2024
  • Aralia continentalis is widely distributed in Far East Asian countries such as Korea, China, and Japan. A. continentalis has traditionally been used as an herbal remedy for various conditions, including analgesia, headache, inflammation, lameness, lumbago, rheumatism, and dental diseases in Korea. Previously, epi-continentalic acid, continentalic acid, and kaurenoic acid as major active biological compounds belonging to the diterpenoid class were identified. To synthesize diterpenoid derivatives with enhanced bioavailability, Fusarium fujikuroi was employed to biotransform diterpenoids due to its known antibacterial activity. This yielded two derivatives of kaurenoic acid, namely 16α-hydroxyent-kauran-2-on-19-oic acid and 2β, 16α-dihydroxy-ent-kauran-19-oic acid, with their chemical structures elucidated via NMR analysis. These derivatives exhibited increased polarity compared to kaur- enoic acid, as evidenced by their retention time on preparative HPLC using the ODS-A column and structural modifications. Evaluation of their antidiabetic activity targeting PTP1B, a negative regulator of the insulin signaling pathway, revealed inhibitory activities of 30.8% and 27.6%, respectively, at a concentration of 4 ㎍/ml. Additionally, both derivatives demonstrated low cytotoxicity, with an IC50 value 18 times higher than kaurenoic acid. Therefore, the augmented water solubility and reduced toxicity of 16α-hydroxy-ent-kauran-2-on-19-oic acid and 2β, 16α-dihydroxy-ent-kauran-19-oic acid, resulting from biotransformation by F. fujikuroi, render them promising candidates for industrial applications.

Characterization of Antidiabetic Compounds from Extract of Torreya nucifera (비자나무 추출물의 항당뇨 활성물질의 특성 연구)

  • Kim, Ji Won;Kim, Dong-Seob;Lee, Hwasin;Park, Bobae;Yu, Sun-Nyoung;Hwang, You-Lim;Kim, Sang Hun;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Natural products have gained increasing attention due to their advantage of long-term safety and low toxicity for a very long time. Torreya nucifera is widespread in southern Korea and Jeju Island and its seeds are commonly used as edible food. Oriental ingredients have often been reported for their insecticidal, antioxidant and antibacterial properties, but there have not yet been any studies on their antidiabetic effect. In this study, we investigated several biological activities of T. nucifera pericarp (TNP) and seeds (TNS) extracts and proceeded to characterize the antidiabetic compounds of TNS. The initial results suggested that TNS extract at 15 and 10 ㎍/ml concentration has inhibitory effects on α-glucosidase and protein tyrosine phosphatase 1B, that is 14.5 and 4.35 times higher than TNP, respectively. Thus, the stronger antidiabetic TNS was selected for the subsequent experiments to characterize its active compounds. Ultrafiltration was used to determine the apparent molecular weight of the active compounds, showing 300 kDa or more. Finally the mixture was then partially purified using Diaion HP-20 column chromatography by eluting with 50~100% methanol. Therefore we concluded that the active compounds of TNS have potential as therapeutic agents in functional food or supplemental treatment to improve diabetic diseases.