• Title/Summary/Keyword: PTP(Precision Time Protocol)

Search Result 12, Processing Time 0.026 seconds

Support the IEEE 1588 Standard in A Heterogeneous Distributed Network Environment PTP for Time Synchronization Algorithms Based Application Framework Development Method (IEEE 1588 표준을 지원하는 이기종 분산 네트워크 환경에서 시간 동기화를 위한 PTP 알고리즘 기반의 어플리케이션 프레임워크 개발 기법)

  • Cho, Kyeong Rae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.67-78
    • /
    • 2013
  • In this paper, We proposed an development method of application framework for using the precision time protocol(PTP) based on physical layer devices to synchronize clocks across a network with IEEE1588 capable devices. The algorithm was not designed as a complete solution across all conditions, but is intended to show the feasibility of such a for the PTP(Precision Time Protocol) based on time synchronization of heterogeneous network between devices that support in IEEE 1588 Standard application framework. With synchronization messages per second, the system was able to accurately synchronize across a single heavily loaded switch. we describes a method of synchronization that provides much more accurate synchronization in systems with larger networks. In this paper, using the IEEE 1588 PTP support for object-oriented modeling techniques through the 'application framework development Development(AFDM)' is proposed. The method described attempts to detect minimum delays, or precision packet probe and packet metrics. The method also takes advantage of the Tablet PC(Primary to Secondary) clock control mechanism to separately control clock rate and time corrections, minimizing overshoot or wild swings in the accuracy of the clock. We verifying the performance of PTP Systems through experiments that proposed method.

Implementation of IEEE 1588v2 PTP for Time Synchronization Verification of Ethernet Network (이더넷 네트워크의 시간 동기화 검증을 위한 IEEE 1588v2 PTP 구현)

  • Kim, Seong-Jin;Ko, Kwang-Man
    • The KIPS Transactions:PartA
    • /
    • v.19A no.4
    • /
    • pp.181-186
    • /
    • 2012
  • The distributed measurement and control system require technology to solve complex synchronization problem among distributed devices. It can be solved by using IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems to synchronize real-time clocks incorporated within each component of the system. In this paper, we implemented the IEEE 1588v2 PTP emulator on BlueScope BL6000A using a delay request-response mechanism to measure clock synchronization.

Design and Implementation of PTP Gateway to Extend IEEE 1588 to Zigbee networks (IEEE 1588의 Zigbee 네트워크 확장을 위한 PTP 게이트웨이 설계 및 구현)

  • Cho, Hyun-Tae;Jung, Yeon-Su;Lee, Seung-Woo;Jin, Young-Woo;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.971-981
    • /
    • 2009
  • The coordination of distributed entities and events requires time synchronization. Precision time synchronization enables a variety of extensions of applications and provides much accurate information. The IEEE 1588 precision time protocol (PTP) provides a standard method to synchronize devices in a network. This paper deals with the design and implementation of a PTP gateway to extend IEEE 1588 to Zigbee networks. The PTP gateway can not only extend IEEE 1588 to Zigbee networks but also share the same time reference using IEEE 1588 between two or more Zigbee networks. This paper also presents experiments and performance evaluation of time synchronization using the PTP gateway. Our result established a method for nodes in a network to maintain their clocks to within a 300 nanosecond offset from the reference clock of a master node via Ethernet.

Precision Improvement Technique of Propagation Delay Distance Measurement Using IEEE 1588 PTP (IEEE 1588 PTP를 이용한 전파 지연 거리 측정의 정밀도 향상 기법)

  • Gu, Young Mo;Boo, Jung-il;Ha, Jeong-wan;Kim, Bokki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.515-519
    • /
    • 2021
  • IEEE 1588 PTP is a precision time protocol in which two systems synchronize without the aid of GPS by exchanging packets including transmission/reception time information. In the time synchronization process, the propagation delay time can be calculated and the distance between the two systems can be measured using this. In this paper, we proposed a method to improve the distance measurement precision less than the modulation symbol period using the timing error information extracted from the preamble of the received packet. Computer simulations show that the distance measurement precision is proportional to the length of the preamble PN sequence and the signal-to-noise ratio.

PTP Management Node-based Time Synchronization Error Detection and Recovery System (PTP Management Node 기반 시각동기 오류 검출 및 대응 시스템)

  • Kim, Yoon Hyun;Son, Kyou Jung;Seo, Young Duk;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.248-253
    • /
    • 2020
  • This paper proposed PTP(Precision Time Protocol) management node-based time synchronization error detection and recovery system. The proposed system is to maintain the preciseness of time synchronization under time synchronization error situations on IEEE 1588-based network environment. To demonstrate the proposed time synchronization error detection and recovery system, PTP implemented EVM(Evaluation Module)-based experiments were performed. As a results of the experiments, it is shown that the proposed system effectively maintains the preciseness of time synchronization under time synchronization error situations.

Fault Tolerance for IEEE 1588 Based on Network Bonding (네트워크 본딩 기술을 기반한 IEEE 1588의 고장 허용 기술 연구)

  • Altaha, Mustafa;Rhee, Jong Myung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.331-339
    • /
    • 2018
  • The IEEE 1588, commonly known as a precision time protocol (PTP), is a standard for precise clock synchronization that maintains networked measurements and control systems. The best master clock (BMC) algorithm is currently used to establish the master-slave hierarchy for PTP. The BMC allows a slave clock to automatically take over the duties of the master when the slave is disconnected due to a link failure and loses its synchronization; the slave clock depends on a timer to compensate for the failure of the master. However, the BMC algorithm does not provide a fast recovery mechanism in the case of a master failure. In this paper, we propose a technique that combines the IEEE 1588 with network bonding to provide a faster recovery mechanism in the case of a master failure. This technique is implemented by utilizing a pre-existing library PTP daemon (Ptpd) in Linux system, with a specific profile of the IEEE 1588 and it's controlled through bonding modes. Network bonding is a process of combining or joining two or more network interfaces together into a single interface. Network bonding offers performance improvements and redundancy. If one link fails, the other link will work immediately. It can be used in situations where fault tolerance, redundancy, or load balancing networks are needed. The results show combining IEEE 1588 with network bonding enables an incredible shorter recovery time than simply just relying on the IEEE 1588 recovery method alone.

A Method of the Grandmaster Selection and the Time Synchronization Using Single TimeSync Frame for Audio/Video Bridging (동기식 이더넷에서 단일 타임싱크 프레임을 이용한 그랜드마스터 결정 및 시간 동기 방법)

  • Kang, Sung-Hwan;Lee, Jung-Won;Kim, Min-Jun;Eom, Jong-Hoon;Kwon, Yong-Sik;Kim, Sung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.112-119
    • /
    • 2008
  • Today, A matter of concern of home network technology increase. The standard of communication between home network devices are required. IEEE 802.1 AVB(Audio/Video Bridging) specifies transmission method for time-sensitive data between these devices using Ethernet in bridged local area networks. IEEE 802.1 AVB and IEEE 1588 PTP(Precision Time Protocol) have various message type for grandmaster selection and synchronize the devices. These messages bring on complexity protocol. We propose a method that uses Single TimeSync frame in order to the problem. Our proposal is appropriate process complexity and low transmission delay for home network by using the TimeSync frame. Furthermore, after all devices are adjusted to the single TimeSync frame, a resource reservation, a forwarding and queueing rule are needed for a time-sensitive application.

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

A standardization of AGNSS-Packet Timing Hybrid for a Synchronization of Femtocell (펨토셀 기지국 동기 획득을 위한 AGNSS-Packet Timing 하이브리드 표준화)

  • Kim, Jung-Hoon;Lee, Ji-Hun;Shin, Jun-Hyo;Jeong, Seok-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1611-1622
    • /
    • 2011
  • The synchronization is one of the important issues for successful operation of femtocell. The synchronization of femtocell is distinctly different from that of larger wireless base stations in a number of important respects such as 1) The femtocell is located in indoor environment which may make it difficult to receive the adequate GNSS signals. 2) The backhaul of femtocell is connected to the public network which may have more PDV than private network. 3) The entire cost of femtocell needs to be very low. In our thesis, we investigate the candidate solutions including AGNSS (Assisted GNSS), NTP (Network Time Protocol), PTP (Precision Timing Protocol) and Cellular Network Listen for indoor timing solution. We propose the AGNSS-PTP Hybrid scheme which can improve time and frequency quality by selecting the better reference between AGNSS and PTP, and cover the standard status which are under discussion from IEEE, ITU-T, and IETF.

Technical Trend of Time Synchronization Equipment in Naro Space Center (나로우주센터 표준시각 동기화장비 기술동향)

  • Han, Yoo-Soo;Choi, Yong-Tae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.116-123
    • /
    • 2008
  • In the launch mission, mission control systems and tracking systems need time synchronization for data monitoring and data analysis. There are several standards for time synchronization and an adequate standard is selected according to the requirement of time accuracy and cost among time synchronization standards. Oscillators are used to maintain time accuracy. There are some kinds of oscillators with diverse characteristics and an adequate oscillator can be adopted according to time accuracy. In this paper, we will specify characteristics of several oscillators and standards generally used for time synchronization. And we will also introduce TSDN(time synchronization and display network) for time synchronization in Naro Space Center.

  • PDF