• Title/Summary/Keyword: PTFE film

Search Result 55, Processing Time 0.031 seconds

Effect of surface topography on wetting angle and micro/nano-tribological characteristics (표면형상이 젖음각과 마이크로/나노 트라이볼로지 특성에 미치는 영향)

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Ho-Sung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.25-33
    • /
    • 2002
  • Effect of surface topography on the water wetting nature and micro/nano tribological characteristics of Si-wafer and PTFE was experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun in different argon don dose conditions in a vacuum chamber to change the surface topography, Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribo tester, SPM (scanning prove microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. The water wetting angle of tile ion beam treated samples also increased with the ion dose. Results also showed that micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-triboloSical characteristics showed little dependence on the wetting angles. The water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

  • PDF

Development of Infra-sonic Transducer Manufactured by Corona Charging Electret (코로나 대전 일렉트렛트로 제작된 초저주파 변환기의 개발)

  • 송재열;정동회;김상걸;안준호;김성열;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.942-945
    • /
    • 2000
  • Recently, electret applications have placed the focus on polymer thin film because electrical properties of a blend are studied. In this paper, we hale measured the infra sonic frequency by using Electret Sensor. Electret is formed by appling the voltage range of -4[kV] to -8[kV] to PTFE film and the sensor is manufactured by moment method to detect the infra-sonic signal. Electret Infrasonic Transducer, which is designed and manufactured by using of the moment method according to the potential and electric field simulation , shows its promising result, since the average rising rate of sensitivity is 7.68 [dB/oct] under 1[Hz], and the average values are within ${\pm}$ 1 [dB/oct]. As a result, it is believed that the characteristics of acquired transducer can be applied to the medical treatment, the industry, and the animal life researches, and also the study on noise elimination is required.

  • PDF

EEG Signal Processing in Japan

  • Utsunomiya, Toshio
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.9-12
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses.

  • PDF

Fluid Dynamics near end-to-end Anastomoses Part III in Vitro wall Shear Stress Measurement

  • Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 1992
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow condi- tions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experi- mental measurements were in good agreement lith numerical results except In flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compli- ance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia (ANFH) in end-to-end anastomoses.

  • PDF

Laser Ablation : Fundamentals and applications in Micropatterning and Thin Film Formation

  • J. Heitz;D. Bauerle;E. Arenholz;N. Arnold;J.T. Dickinson
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.103-108
    • /
    • 1999
  • We present recent results on ablation mechanism, single-pulse laser micropatterning , pulsed-laser deposition(PLD) and particulates formation accompanying laser ablation, with special emplasis on polymers, in particular polymide, (PI), and polytetrafluoroethylene, (PTFE). Ablation of polymers is described on the basis of photothermal bond breaking within the bulk material. Here, we assume a first order chemical reaction, which can be described by an Arrhenius law. Ablation starts when the density of broken bonds at the surface reaches a certain critical value. Single-pulse laser ablation of polyimide shows a clear-length dependence of the threshold fluence. This experimental result strongly supports a thermal ablation model. We discuss the various possibilities and drawbacks of PLD and describe the morphology, physical properties and applications of PTFE films.

  • PDF

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF

Sulfonated Polystyrene/PTFE Composite Membranes for Direct Methanol Fuel Cell (직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구)

  • 김정훈;신정필;박인준;이수복;서동학
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.173-184
    • /
    • 2004
  • For the application of direct methanol fuel cell (DMFC), sulfonated polystyrene/teflon (PS/PTFE) composite membranes were developed by changing monomer ratio of styrene and DVB. The composite membranes were prepared as follows: first, the monomer mixtures consisting of styrene, divinyl benzene and AIBN were impregnated in porous PTFE film and then, polymerized under 8$0^{\circ}C$ to give PS/PTFE membranes. Finally, the membranes were reacted with chlorosulfonic acid in 1,2-dichloroethane to give the sulfonated composite membranes. The measurements of ATR-FTIR, SEM, solvent uptake test and ion exchange capacity (IEC) were done for the resulting membranes before or after sulfonation, respectively, which showed the composite membranes with proper crosslinking degree and sulfonic acid content were prepared well as a function of styrene/DVB ratio. ion conductivity and methanol permeability were studied for the sulfonated membranes. It was found that with decreasing the ratio of styrene/DVB, methanol permeability decreased from $6.6{\times}10^{-7}∼1.3{\timas}10^{-7}$ $\textrm{cm}^2$/s, which are much lower values than that of Nafion$^{(R)}$117($1.02{\times}10^{-6}$ $\textrm{cm}^2$/s). Under the same monomer condition, ion conductivity decreased from 0.11 S/cm ($25^{\circ}C$) to 0.08 S/cm ($25^{\circ}C$), which are similar or a little higher values compared with $Nafion^{(R)}117 (1.02{\times}10^{-6}$ $\textrm{cm}^2$/s, 0.0824 S/cm). These two results confirmed the composite membranes prepared could be applied successfully to DMFC.C.

A Study of Optimum Electromagnetic Field Analysis and Application of the Electret Sensor Using Computer Simulation (컴퓨터 시뮬레이션에 의한 일렉트렛트 센서의 최적 전계 해석과 응용)

  • 정동회;김상걸;김성렬;김용주;김영천;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.435-438
    • /
    • 1998
  • In this paper, Electret is formed to range voltage -5[kV] to -8[kV] by corona charging in PTFE film and sensor is manufactured by method of moments in sensing infra sonic. Charges of charged film are calculated also TSC measurement and induced potential of sensing electrode according to the charges is become aware of computer simulation. Electret Infra Sonic Transducer, which is designed and manufactured according to the potential and electric field simulation in using method of moments, is proved as it is effectively. Because sensitivity that measured under 10[Hz] is that average value of sensitivity rising rate is 6.34 [dB/oct] as average value is $\pm$1 [dB/oct] range -5[kV] to -8[kV] in corona charging film. As a result, it is believed that characteristic of acquired transducer can be application of medical treatment, industry, and animal life researches and the study of noise elimination, what's more, is required.

  • PDF

Feasibility Study of Parallel- Plate Detector Using Dielectric film for 6 MV X-ray (6MV X-선 검출특성 조사를 위하여 유전체 필름을 이용하여 제작한 평행판 검출기의 유용성)

  • 조문준;김용은;이병용;김정기;임상욱;김현수;김기환
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The parallel plate detector with dielectric film for dosimetry was designed to measure detection characteristic of 6 MV X-ray with medical linear accelerator. PTFE film was inserted into FEP films that are made by two one-side metal coated materials for ion source. The thicknesses of PTFE dielectric film was 100 ${\mu}{\textrm}{m}$ and the thickness of FEP dielectric film was 100 ${\mu}{\textrm}{m}$, respectively. This detector was fixed by two acrylic plate for physical hardness ad geometrical consistency. The geometrical condition for measurement with parallel-plate for detector was below; SSD=100 cm and the 5 cm depth between detector and phantom surface The major parameter of detector characteristics such as zero drift current, leakage current, charge response by applied voltage, reproducibility, linearity, TMR measurement, dose rate effect were measured. The zero drift currents are 8.3 pA and leakage currents are 10 pA. The charge response of applied voltage is showing linearity in 414 voltage. The measurement deviation of reproducibility in this detector is within 1% for dose and the linearity of applied dose shows in this detector. The TMR curves in phantom between this parallel plate detector and reference detector are matched within 3% deviation from maximum dose depth to 7.5 cm depth. It is considered that this dosimetric system is satisfactory for the purpose of the constancy check of the 6 MV x-ray from medical linear accelerator.

  • PDF

Improvement of Adhesion Between metal and Polymer by Ion Assisted Reaction (IAR) (이온 보조 반응법을 이용한 금속과 고분자의 접착력 향상)

  • 최성창;김현주;고석근
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.221-228
    • /
    • 1998
  • Enhancement of adhesion between polymer films and metal films are obtained by forming the hydrophilic functional groups on the polymer surfaces by ion assisted reaction which uses ion beam in reactive gas environments. In ion assisted reaction, ion dose, blown gas flow rate and ion energy were changed from $5\times 10^{14}$ to $1\times 10^{17}\textrm{ions/cm}^2$, from 0 to 8 sccm, and 0.3 to 1.2 kV, respectively. Wetting angle of water on polymer films modified by $ Ar^+$ ion without blowing oxygen decreases to ~$40^{\circ}$. Contact angle of water on polymer films modified by $ Ar^+$ ion with blowing oxygen decreases to ~$20^{\circ}$, and the surface free energy increases to ~70 dyne/$\textrm{cm}^2$. However, contact angle of water on polytetraflouroethylene (PTFE) modified by ion assisted reaction increases with ion dose. The adhesion strength of metal film deposited on the polymer surface was investigated. In the case of the metal film deposited on the untreated polymers, the metal films are detached from the polymer surface. While, In the case of the metal film deposited on the polymers treated by ion assisted reaction, the metal films are strongly adhere to the polymer surfaces.

  • PDF