• Title/Summary/Keyword: PTDF

Search Result 13, Processing Time 0.031 seconds

A Study on an Transmission Right Issuance Quantity Assessment Method by using Power Transfer Distribution Factor(PTDF) under FlowGate Right(FGR) (FlowGate Right(FGR) 도입 시 Power Transfer Distribution Factor(PTDF)를 이용한 송전권 계약용량 산정 방법 연구)

  • Baeck, Woong-Ki;Bang, Young-Sun;Chun, Yeong-Han;Kim, Jung-Hoon;Kwak, No-Hong;Lee, Baek-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.861-863
    • /
    • 2005
  • LMP based congestion management method is suggested as an effective tool, because network congestion can be handled by energy price. It is now being widely used in the North American Electricity Markets. Among them, FGR(Flow-gate rights) is considered to be appropriate for our system, as power flow through the congested line is unidirectional and congestion occurs in the known place. In the CBP market, hedging through transmission right is not necessary even though location pricing system is adopted, because there are no risks in the energy price. Rut, transmission rights should be adopted in the advanced market. Key issue when implementing FGR is how to decide transmission right issuance quantify. This paper deals with a method to decide transmission right issuance quantity by using power. Transfer Distribution Factor(PTDF).

  • PDF

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

Effect of Financial Transmission Rights on the Strategic Bidding Behavior of the Electricity Producers (재무적 송전권이 발전사의 전략적 입찰에 미치는 영향)

  • Lee, Kwang-Ho;Shin, Jae-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1226-1231
    • /
    • 2010
  • This paper looks at the influence of Financial Transmission Rights (FTRs) on the market value(Social Welfare; SW) in the competitive electricity market. The transmission line constraints make it difficult to compute the Nash Equilibrium (NE) due to causing a mixed strategy NE instead of a pure strategy NE. Computing a mixed strategy is more complicated in a multi-player game. The aim of this paper are to compute a mixed strategy NE and analyze SW in power transaction with FTRs. This paper introduces a formula and a technique for solving NE of multi-player game with FTRs. In addition, it analyzes the influence of holding of FTRs by generation company on SW and it proposes the SW at NE is influenced by Power Transfer Distribution Factor (PTDF) where holder of FTRs are located. The assertion is verified by calculating the mixed strategy utilizing the Cournot model widely used for studies on FTRs.

A Study on the Minimization of Generation Cost of an Individual Power Generation Considering Available Transfer Capability(ATC) (가용송전용량을 고려한 각 발전회사의 발전비용 최소화 기법 개발에 관한 연구)

  • Jeong, Sung-Won;Gim, Jae-Hveon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.12
    • /
    • pp.586-591
    • /
    • 2005
  • This paper presents a method of minimizing of generation cost on individual electrical power utility. The method is based on the Economic Dispatch (ED) and linear Available Transfer Capability (ATC). The economic dispatch redistributes the total load to individual units to minimize the generation cost without transmission network constraints. The proposed method is implemented using ATC calculated from Power Transfer Distribution Factor (PTDF) for the transmission network constraints. The performance of the proposed method has been tested for the IEEE-30 bus system. It has also been observed that the results of the proposed method is compared with that of optimal power flow.

Retarding Effect of Dietary Fiber Isolated from Persimmon Peels and Juubes on in vitro Glucose, Bile Acid, and Cadmium Transport (감과피와 대추로부터 분리한 식이섬유의 포도당, 담즙산 , 카드뮴 투과 억제에 관한 in vitro 연구)

  • 이혜진
    • Journal of Nutrition and Health
    • /
    • v.31 no.4
    • /
    • pp.809-822
    • /
    • 1998
  • Retarding effects of the dietary fibers from persimmon peels (PTDF ; total dietary fibers, PIDF ; insoluble dietary fibers, PSDF ; soluble dietary fibers) and dried jujubes (JTDF ; total dietary fibers, JIDF ; insoluble dietary fibers, JSDF ; soluble dietary fibers) on glucose, bile acid and cadmium transport were evaluated by in vitro dialysis sack method. These effects were compared with those of commerical citrus pectin, CM-cellulose (CMC) and $\alpha$-cellulose. Yields of PTDF, PIDF and PSDF on wet weight basis were 14.04% , 11.61%, 1.76%, respectively, and those from dried jujubes were 14.80%, 9.98% and 2.80%, respectively. The amount of soluble fibers in JTDF was higher than PTDF. Soluble fibers had the retarding effects on glucose transport but insoluble fibers did not have. CM-cellulose showed the greatest retarding effect, which was followed by citrus pectin and JSDF. Among the soluble fibers, PSDF had the lowest retardig effect. Retarding effect of TDF was dependent upon the amount of SDF in TDF. Regarding bile acid dialysis , insoluble dietary fibers as well as soluble dietary fibers showed the retarding effects, among which JSDF had the greatest retarding effects, among which JSDF had the greatest retarding effect, followed by citrus pectin. Among the extracted fibers, dietary fibers from dried jujubes were more effective than these from persimmon peels, and SDF seemed to show higher retarding effects than IDF and TDF. On cadmium transport retardation , all dietary fibers except $\alpha$-cellulose had the retarding effects and PSDF showed the greatest effect which was followed by PIDF and CMC, The extracted fibers showed higher retarding effect on Cd transport than glucose and bile acid transport, and dietary fibers from persimmon peels showed higher retarding effects than those from dried jujubes.

  • PDF

The ATC Calculation Method with Thermal Constraints and Voltage Stability Constraints (열적용량과 전압안정도를 고려한 ATC 계산 방법에 관한 연구)

  • Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • This paper proposes two fast calculation methods of ATC. These two methods evaluate ATC with thermal constraints(Thermal ATC) and ATC with voltage stability constraints(Voltage ATC) respectively. The ATC with thermal constraints was based on the linear incremental power flow to account for the line flow thermal loading effects when the n-1 security constraints were included. The ATC with voltage stability constraints used two-bus equivalents of the system to find the maximum load at a load bus before reaching the voltage stability problem. The methods were tested on the IEEE 30bus systems and the results obtained were compared with those found by some other methods.

A Study on the Available Transfer Capability(ATC) calculation with Contingency (상정사고를 고려한 ATC 계산에 관한 연구)

  • Jeong, Sung-Won;Hwang, Keon-Ho;Kim, Yang-Il;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.296-297
    • /
    • 2008
  • This paper proposed a methods to ATC calculation using energy function. In this paper, ATC was calculated as PTDF, LODF, RPF and Energy Function method and calculation results of each methods was compared. Contingency ranking method decided the overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering contingency suggested in this paper.

  • PDF

A Study on the Mitigation of Market Power using Contingent Transmission Rights in Competitive Electricity Markets (경쟁적 전력시장에서 송전권을 이용한 지역적 시장지배력 완화방안)

  • Park, Jung-Sung;Chung, Kooh-Hyung;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.268-276
    • /
    • 2007
  • Transmission congestion is one of the key factors to local market power in competitive electricity markets. Financial transmission rights provide the financial protection to their holders by paying back the congestion rent. A variety researches have shown that the existing trading mechanisms on transmission right can exacerbate market power. This paper proposes an alternative methodology in mitigating the local market power using the Contingent Transmission Rights on the locational marginal pricing scheme. The proposed methodology was demonstrated with the Optimal Power Flow.

Optimal Congestion Management Based on Sensitivity in Power System with Wind Farms (민감도를 이용하여 풍력단지가 연계된 송전계통의 최적혼잡처리)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1965-1970
    • /
    • 2016
  • This paper studies generator rescheduling technique for congestion management in power system with wind farms. The proposed technique is formulated to minimize the rescheduling cost of conventional and wind generators to alleviate congestion subject to operational line overloading. The generator rescheduling method has been used with incorporation of wind farms in the power system. The locations of wind farms are selected based upon power transfer distribution factor (PTDF). Because all generators in the system do not need to participate in congestion management, the rescheduling has been done by generator selection based on the proposed generator sensitivity factor (GSF). The selected generators have been rescheduled using linear programming(LP) optimization techniques to alleviate transmission congestion. The effectiveness of the proposed methodology has been analyzed on IEEE 14-bus systems.

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.