• Title/Summary/Keyword: PSS tuning

Search Result 36, Processing Time 0.039 seconds

Tuning of Dual-input PSS and Its Application to 612 MVA Thermal Plant: Part 1-Tuning Methology of IEEE Type PSS2A Model (다중입력 PSS 튜닝 방법과 612 MVA 화력기 적용: Part 1-IEEE PSS2A 튜닝 방법)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Sung-Min;Kim, Jin-Yi;Hwang, Bong-Hwan;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.655-664
    • /
    • 2009
  • This paper, Part 1, describes the effective dual-input PSS parameter design procedure for the IEEE Type PSS2A against the Dangjin 612 MVA thermal plant's EX2000 excitation system. The suggested tuning technique used the model-based PSS tuning method and consisted of three steps: 1) generation system modeling; 2) determination of PSS2A model parameters using linear, time-domain transient and 3-phase simultaneous analyses, and 3) field testing and verification, which are described in Part 2. The effective PSS2A model parameters of EX2000 system in the Dangjin T/P #4 were designed according to the suggested procedure, and verified by using three analyses.

A Basic Study for Tuning Power System Stabilizer PART-II : Tuning Methods for Selecting Optimal PSS Parameters in Real Power Systems (PSS 튜닝을 위한 기본 연구 PART II : PSS 실계통 최적 정수 선정을 위한 튜닝기법)

  • Kim, Tae-Gyun;Sin, Jeong-Hun;Yun, Yong-Beom;Kim, Dong-Jun;Mun, Yeong-Hwan;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.350-358
    • /
    • 2000
  • Based on the results in the first-part paper, PSS tuning methods including the determination of PSS gain and compensation of phasor lagging are investigated in this second part. In the phase compensation, PSS should compensate phase lagging, resulted from power system-generator-excitation system loop, to provide damping torque in equal phase with the generator speed. Also, PSS gain should be determined to provide maximum damping torque as much as possible without the other modes unstable. In this paper, gain tuning method using the root-locus and the phase compensation of PSS at the one machine with infinite bus system are presented. The differences between PSS tuning at the tuning condition and at the least-stable condition are also discussed.

  • PDF

A Basic Study for Tuning Power System Stabilizer Part I : Analyzing the Torque Characteristics of Power System Corresponding to Operating Conditions (PSS 튜닝을 위한 기본 연구 Part I : 계통 운전조건에 대한 토오크 특성분석)

  • 김동준;문영환;김태균
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1064-1072
    • /
    • 1999
  • The basic concepts, which are related to the PSS tuning conditions and performance conditions for the safe of determination of PSS gain and compensation of phasor lagging, are thoroughly investigated in this first part. The performance conditions, where the power system has the lowest inherent damping torque and PSS should provide maximum damping torque, are examined by analysing synchronizing torque and damping torque supplied by the voltage control loop at the oscillation frequency. PSS tuning conditions are also investigated by observing the phasor lagging and the gain, resulted from power system-generator-excitation system depending on operating conditions, such as generator active power, reactive power, transmission impedance and AVR gain. The basic concepts developed in this PartImake it possible to lay foundation for the discussion of PSS tuning in Part II.

  • PDF

An Analysis on Effects of Phase Compensation on Power System Stability in the PSS Parameter Tuning (PSS Tuning시 위상보상이 계통안정도에 미치는 영향 분석)

  • Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1147-1149
    • /
    • 1998
  • This paper presents the result of an analysis on effects of phase compensation on power system stability in the PSS parameter tuning. Synchronizing and damping coefficients are induced from lineal model for generator with PSS. Synchronizing and damping coefficients corresponding to time constants of phase compensation control block are calculated on a single machine, infinite bus test system. The Parameter tuning concepts, basic function, structural elements and performance criteria of PSS are introduced.

  • PDF

PSS Tuning of EX2000 Excitation System in Thermal Plant: Part I- Optimal PSS Parameter Design (대형 화력발전소 EX2000 여자시스템 PSS 튜닝 : Part 1- 최적 PSS 파라메터 설계)

  • Kim, D.J.;Moon, Y.M.;Kim, S.M.;Kim, J.Y.;Hwang, B.H.;Choi, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.13-14
    • /
    • 2008
  • This paper describes the optimal PSS parameter design for the PSS of EX2000 excitation system. The suggested tuning technique uses the model-based PSS tuning method which have three steps: generation system modeling, determination of PSS parameters, and on-site test. Using this method, the PSS parameters of EX2000 system in Dangjin T/P #4 was designed and verified by linear analysis program, PSS/E, and EMTDC/PSCAD.

  • PDF

A Study on the Tuning method of PSS Control Parameters (실계통 PSS 정수 튜닝기법에 관한 연구)

  • Shin, Jeong-Hoon;Kim, Tae-Kyun;Yoon, Yong-Beum;Kim, Dong-Joon;Moon, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.251-254
    • /
    • 1999
  • This paper presents the basic tuning method for PSS control parameters. This method includes the phase compensation and root-locus based gain tuning for one machine with infinite bus system. At the tuning condition and least stable condition, the effect of gain tuning is also discussed.

  • PDF

Design and Tuning of Micro 5KVA Machine's AVR/PSS Robust Control Parameters (축소형 5KVA 동기발전기 AVR/PSS 강건한 제어정수 설계 및 튜닝)

  • Kim, D.J.;Moon, Y.H.;Kim, T.K.;Shin, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.165-168
    • /
    • 2000
  • This paper describes the guideline of design and tuning of practical Micro 5KVA machine's digital AVR/PSS control parameters by using the computer models and testing on-line AVR step test of laboratory simulator under the no-load or load conditions. The suggested procedures can be also applied to the large scaled machine's AVR/PSS control parameter tuning in KEPCO system.

  • PDF

Optimal Tuning of Nonlinear Parameters of a Dual-Input Power System Stabilizer Based on Analysis of Trajectory Sensitivities (궤도민감도 분석에 기반하여 복입력 전력시스템 안정화 장치(Dual-Input PSS)의 비선형 파라미터 최적화 기법)

  • Baek, Seung-Mook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.915-923
    • /
    • 2008
  • This paper focuses on optimal tuning of nonlinear parameters of a dual-input power system stabilizer(dual-input PSS), which can improve the system damping performance immediately following a large disturbance. Until recently, various PSS models have developed to bring stability and reliability to power systems, and some of these models are used in industry applications. However, due to non-smooth nonlinearities from the interaction between linear parameters(gains and time constants of linear controllers) and nonlinear parameters(saturation output limits), the output limit parameters cannot be determined by the conventional tuning methods based on linear analysis. Only ad hoc tuning procedures('trial and error' approach) have been used. Therefore, the steepest descent method is applied to implement the optimal tuning of the nonlinear parameters of the dual-input PSS. The gradient required in this optimization technique can be computed from trajectory sensitivities in hybrid system modeling with the differential-algebraic-impulsive-switched(DAIS) structure. The optimal output limits of the dual-input PSS are evaluated by time-domain simulation in both a single machine infinite bus(SMIB) system and a multi-machine power system in comparison with those of a single-input PSS.

Field test Results for PSS Parameter Tuning in Seo-Incheon Power Plant (서인천 복합화력 발전소의 PSS 파라메터 Tuning)

  • Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1143-1146
    • /
    • 1998
  • Static excitation systems with high gain and fast response times greatly aid transient stability. but at the same time tend to reduce small signal stability. The objective of the power system stabilizer(PSS) control is to provide a positive contribution to damping of the generator rotor angle swings, which are in a broad range of frequencies in the power system. Therefore, this paper shows the field test results for the GE's EX2000 PSS tuning on units at Seo-Incheon power plant. The test is to verify that the PSS response meets GE's design, criteria. The responses of generator terminal voltage, active power, field voltage and current were analyzed and PSS gain was tuned by 10 finally.

  • PDF

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.178-187
    • /
    • 2007
  • One important issue in power systems is dynamic instability due to loosing balance relation between electrical generation and a varying load demand that justifies the necessity of stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate stabilizing signals over a wide range of operating conditions and disturbances. To overcome these drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-based method is used for off-line training of this supervisor controller. The proposed PSS is tested in three operational conditions; nominal load, heavy load, and in the case of fault occurrence in transmission line. The simulation results are provided to compare the proposed PSS with conventional fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the performance and robustness of proposed PSS in different operating conditions is more acceptable