• 제목/요약/키워드: PSO(Particle Swarm Optimization)

검색결과 501건 처리시간 0.029초

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Hybrid PSO를 이용한 안전도를 고려한 경제급전 (The Security Constrained Economic Dispatch with Line Flow Constraints using the Hybrid PSO Algorithm)

  • 장세환;김진호;박종배;박준호
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1334-1341
    • /
    • 2008
  • This paper introduces an approach of Hybrid Particle Swarm Optimization(HPSO) for a security-constrained economic dispatch(SCED) with line flow constraints. To reduce a early convergence effect of PSO algorithm, we proposed HPSO algorithm considering a mutation characteristic of Genetic Algorithm(GA). In power system, for considering N-1 line contingency, we have chosen critical line contingency through a process of Screening and Selection based on PI(performance Index). To prove the ability of the proposed HPSO in solving nonlinear optimization problems, SCED problems with nonconvex solution spaces are considered and solved with three different approach(Conventional GA, PSO, HPSO). We have applied to IEEE 118 bus system for verifying a usefulness of the proposed algorithm.

경제급전 문제에의 개선된 PSO 알고리즘 적용 (An Improved Particle Swarm Optimization for Economic Dispatch Problems with Prohibited Operating Zones)

  • 정윤원;이우남;김현홍;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.850-851
    • /
    • 2007
  • This paper presents an efficient approach for solving the economic dispatch (ED) problems with prohibited operating zones using an improved particle swarm optimization (PSO). Although the PSO-based approaches have several advantages suitable to the heavily constrained nonconvex optimization problems, they still have the drawbacks such as local optimal trapping due to the premature convergence (i.e., exploration problem) and insufficient capability to find nearly-by extreme points (i.e., exploitation problem). This paper proposes an improved PSO framework adopting a crossover operation scheme to increase both exploration and exploitation capability of the PSO. The proposed method is applied to ED problem with prohibited operating zones. Also, the results are compared with those of the state-of-the-art methods.

  • PDF

PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm

  • Kong, Zhengyu;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1568-1589
    • /
    • 2021
  • Deployment of access point (AP) is a problem that must be considered in network planning. However, this problem is usually a NP-hard problem which is difficult to directly reach optimal solution. Thus, improved AP deployment optimization scheme based on swarm intelligence algorithm is proposed to research on this problem. First, the scheme estimates the number of APs. Second, the multi-objective particle swarm optimization (MOPSO) algorithm is used to optimize the location and transmit power of APs. Finally, the greedy algorithm is used to remove the redundant APs. Comparing with multi-objective whale swarm optimization algorithm (MOWOA), particle swarm optimization (PSO) and grey wolf optimization (GWO), the proposed deployment scheme can reduce AP's transmit power and improves energy efficiency under different numbers of users. From the experimental results, the proposed deployment scheme can reduce transmit power about 2%-7% and increase energy efficiency about 2%-25%, comparing with MOWOA. In addition, the proposed deployment scheme can reduce transmit power at most 50% and increase energy efficiency at most 200%, comparing with PSO and GWO.

PSO 알고리즘을 이용한 전력계통의 상태추정에 관한 연구 (A Study on State Estimation in Power Systems using Particle Swarm Optimization)

  • 정희명;박준호;이화석;김종율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.291-293
    • /
    • 2006
  • In power systems, the state estimation takes an important role in security control. At present, the weighted least squares(WLS) method has been widely used to the state estimation computation. This paper presents an application of Particle Swarm Optimization(PSO) to state estimation in power systems. PSO is a modern heuristic optimization method to overcome the problems of classical optimization. PSO is employed to solve state estimation on the IEEE-30 bus system.

  • PDF

볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계 (Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System)

  • 장한종;오성권
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.