• Title/Summary/Keyword: PSD-95

Search Result 41, Processing Time 0.018 seconds

Promotion of Synaptic Maturation by Deep Seawater in Cultured Rat Hippocampal Neurons (해양심층수의 해마신경세포 연접형성 촉진 효과)

  • Kim, Seong-Ho;Lee, Hyun-Sook;Shon, Yun-Hee;Nam, Kyung-Soo;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1479-1484
    • /
    • 2008
  • Deep seawater (DSW) refers to water extracted from the ocean, usually at depths of 200 meters or more, which is rich in inorganic materials and has attracted attention for various applications. We investigated the effects of the DSW on the synaptic maturation of cultured rat hippocampal neurons. Immunocytochemical examination of DIV21 showed that PSD-95, $\alpha$CaMKII, and synGAP$\alpha1$clusters were strengthened and coupling rates of SV2 and NR2B were significantly increased in neurons grown in the presence of H-800 and H-1000 DSW. Our results indicate that DSW promotes the formation of excitatory postsynaptic signal transduction complexes NRC/MASC and functional synapses.

Preparation and Characterization of Suvarna Bhasma Parada Marit - Characterization of Suvarna Bhasma Parada Marit -

  • Thakur, Kapil;Gudi, Ramacharya;Vahalia, Mahesh;Shitut, Shekhar;Nadkarni, Shailesh
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.36-44
    • /
    • 2017
  • Objectives: The goal of this study was to characterize Suvarna Bhasma Parada Marit by using the Ayurvedic test parameters, physico-chemical tests, and various instrumentation techniques. Methods: Suvarna Bhasma, an Ayurvedic formulation manufactured as per Bharat Bhaishajya Ratnakar 5/8357 (BBR), has been studied using various instrumentation techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), laser particle size distribution (PSD) analysis, fourier transform infrared spectroscopy (FT-IR), and atomic absorption spectroscopy (AAS), and physico-chemical parameters, such as the loss on drying (LOD), loss on ignition (LOI), and acid insoluble Ash (AIA) were determined. In addition, Ayurvedic tests, such as Rekhapurnatva (enterable in the furrows of the fingers), Varitaratwa (floatable over water), Nirdhoomta (smokeless), Dantagre Kach-Kach (gritty particle feeling between the teeth), were performed. Results: The XRD study showed Suvarna Bhasma to be crystalline in nature and to contain more than 98% gold. The mean size of the gold crystallites was less than 10 microns, and the morphology was globular and irregular. Suvarna Bhasma contains gold as its single and major element, with EDAX and FT-IR spectra showing that it is more than 98% pure gold. The moisture content (LOD) is less than 0.5%, the LOI is less than 2%, and the AIA is not less than 95%. The Ayurvedic tests, as specified above, helped to confirm the quality of Suvarna bhasma prepared as per the text reference (BBR). Conclusion: This chemical characterization of Suvarna Bhasma performed in this study by using modern instrumentation techniques will be helpful in understanding its pharmacological actions and will help in establishing quality protocols and specifications to substantiate the safety, efficacy & quality of Suvarna Bhasma.

Characterization of a CLYC Detector and Validation of the Monte Carlo Simulation by Measurement Experiments

  • Kim, Hyun Suk;Smith, Martin B.;Koslowsky, Martin R.;Kwak, Sung-Woo;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Background: Simultaneous detection of neutrons and gamma rays have become much more practicable, by taking advantage of good gamma-ray discrimination properties using pulse shape discrimination (PSD) technique. Recently, we introduced a commercial CLYC system in Korea, and performed an initial characterization and simulation studies for the CLYC detector system to provide references for the future implementation of the dual-mode scintillator system in various studies and applications. Materials and Methods: We evaluated a CLYC detector with 95% $^6Li$ enrichment using various gamma-ray sources and a $^{252}Cf$ neutron source, with validation of our Monte Carlo simulation results via measurement experiments. Absolute full-energy peak efficiency values were calculated for gamma-ray sources and neutron source using MCNP6 and compared with measurement experiments of the calibration sources. In addition, behavioral characteristics of neutrons were validated by comparing simulations and experiments on neutron moderation with various polyethylene (PE) moderator thicknesses. Results and Discussion: Both results showed good agreements in overall characteristics of the gamma and neutron detection efficiencies, with consistent ~20% discrepancy. Furthermore, moderation of neutrons emitted from $^{252}Cf$ showed similarities between the simulation and the experiment, in terms of their relative ratios depending on the thickness of the PE moderator. Conclusion: A CLYC detector system was characterized for its energy resolution and detection efficiency, and Monte Carlo simulations on the detector system was validated experimentally. Validation of the simulation results in overall trend of the CLYC detector behavior will provide the fundamental basis and validity of follow-up Monte Carlo simulation studies for the development of our dual-particle imager using a rotational modulation collimator.

The Effects of Woohwangcheongsim-won on Hypoxic E18 Cortical Neuroblast (우황청심원(牛黃淸心元)이 저산소증 유발 배양신경세포에 미치는 영향)

  • Cho, Gyu-Seon;Shin, Gil-Cho;Moon, Il-Soo;Lee, Won-Chul;Chung, Sung-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2001
  • Objectives : The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won on neuronal death of hypoxic E18 cortical neuroblast. Methods : To evaluate the effect of Woohwangcheongsim-won on neuronal death caused by hypoxia, the survival rate of E18 cortical neuroblast was measured with MTT assay and the changes of several synaptic proteins and enzymes were investigated with the immunoblot assays. Results : The E18 cortical neuroblasts were added 50, 100, 500, 1,000, and $5,000{\mu}g/ml$ Woohwangcheongsim-won. They showed neurotoxicity, when the concentration of Woohwangcheongsim-won was above $1,000{\mu}g/ml$. The E18 cortical neuroblasts, which were added 50, 100, and $500{\mu}g/ml$ Woohwangcheongsim-won, were exposed 98% $N_2/5%\;CO_2$ for 3 hours to induce hypoxia, 3 days later, the survival rate of $50{\mu}g/ml$ Woohwangcheongsim-won was 141.5% when compared to the control group. On the immuneblot assays, the expressions of ${\alpha}$CaMKII, NR2A, NR28, PDE2, PSD-95, and eEF-$1{\alpha}$ were increased in normoxia, but those of NR2A, NR2B were decreased in hypoxia when compared to the control group. Conclusions : The data shows that the effects of Woohwangcheongsim-won on neuronal death of hypoxic E18 cortical neuroblast is a significant result.

  • PDF

Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression

  • Lee, Bombi;Sur, Bongjun;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.435-443
    • /
    • 2022
  • Background: Post-traumatic stress disorder (PTSD) is a psychiatric disease that develops following exposure to a traumatic event and is a stress-associated mental disorder characterized by an imbalance of neuroinflammation. Korean Red Ginseng (KRG) is the herbal supplement that is known to be involved in a variety of pharmacological activities. We aimed to investigate the effects of KRG on neuroinflammation as a potential mechanism involved in single prolonged stress (SPS) that negatively influences memory formation and consolidation and leads to cognitive and spatial impairment by regulating BDNF signaling, synaptic proteins, and the activation of NF-κB. Methods: We analyzed the cognitive and spatial memory, and inflammatory cytokine levels during the SPS procedure. SPS model rats were injected intraperitoneally with 20, 50, or 100 mg/kg/day KRG for 14 days. Results: KRG administration significantly attenuated the cognitive and spatial memory deficits, as well as the inflammatory reaction in the hippocampus associated with activation of NF-κB in the hippocampus induced by SPS. Moreover, the effects of KRG were equivalent to those exerted by paroxetine. In addition, KRG improved the expression of BDNF mRNA and the synaptic protein PSD-95 in the hippocampus. Taken together, these findings demonstrate that KRG exerts memory-improving actions by regulating anti-inflammatory activities and the NF-κB and neurotrophic pathway. Conclusion: Our findings suggest that KRG is a potential functional ingredient for protecting against memory deficits in mental diseases, such as PTSD.

Expression of c-Jun N-Terminal Kinase (JNK)-Interacting Protein (JIP) in Cultured Rat Hippocampal Neurons (배양한 흰쥐 해마신경세포에서 c-Jun N-terminal kinase (JNK)-interacting protein (JIP)의 표현)

  • Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1627-1633
    • /
    • 2007
  • c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1), also known as Islet-brain 1 (IB1), is a scaffold protein that is highly expressed in neurons and pancreatic ${\beta}-cells$. In this study subcellular localization of JIP was investigated in cultured rat hippocampal neurons using an antibody that recognize all variants of JIP1, JIP-2 and JIP-3. The overall expression profile of JIP is punctate throughout soma and dendrites. Statistic analysis showed that $54.8{\pm}4.0%\;and\;94.1{\pm}4.5%$ of total JIP immunopuncta overlapped with those of excitatory postsynaptic markers SD-95 and ${\alpha}Camik$, respectively. In contrast, only $8.6{\pm}0.5%\;and\;7.3{\pm}0.5%$ of JIP clusters overlapped with those of inhibitory postsynaptic markers glycine receptor (GlyR) and gephyrin, respectively. JIP clusters overlapped or juxtaposed with SV2 but not GAD, markers for general and inhibitory nerve terminals, respectively. A substantial fraction $(29.3{\pm}1.0%)$ of flotillin immunopuncta, a marker for lipid rafts, clusters overlapped with those of JIP. In addition, JIP was highly expressed in some select ends of dendrites but minimal in axons. These data suggest important roles of JIP in excitatory postsynaptic sites, lipid rafts and dendritic ends.

Ginsenoside Rg1 alleviates Aβ deposition by inhibiting NADPH oxidase 2 activation in APP/PS1 mice

  • Zhang, Han;Su, Yong;Sun, Zhenghao;Chen, Ming;Han, Yuli;Li, Yan;Dong, Xianan;Ding, Shixin;Fang, Zhirui;Li, Weiping;Li, Weizu
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.665-675
    • /
    • 2021
  • Background: Ginsenoside Rg1 (Rg1), an active ingredient in ginseng, may be a potential agent for the treatment of Alzheimer's disease (AD). However, the protective effect of Rg1 on neurodegeneration in AD and its mechanism of action are still incompletely understood. Methods: Wild type (WT) and APP/PS1 AD mice, from 6 to 9 months old, were used in the experiment. The open field test (OFT) and Morris water maze (MWM) were used to detect behavioral changes. Neuronal damage was assessed by hematoxylin and eosin (H&E) and Nissl staining. Immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction (q-PCR) were used to examine postsynaptic density 95 (PSD95) expression, amyloid beta (Aβ) deposition, Tau and phosphorylated Tau (p-Tau) expression, reactive oxygen species (ROS) production, and NAPDH oxidase 2 (NOX2) expression. Results: Rg1 treatment for 12 weeks significantly ameliorated cognitive impairments and neuronal damage and decreased the p-Tau level, amyloid precursor protein (APP) expression, and Aβ generation in APP/PS1 mice. Meanwhile, Rg1 treatment significantly decreased the ROS level and NOX2 expression in the hippocampus and cortex of APP/PS1 mice. Conclusions: Rg1 alleviates cognitive impairments, neuronal damage, and reduce Aβ deposition by inhibiting NOX2 activation in APP/PS1 mice.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Analysis of Cooling Air Current and Efficiency of Air Conditioning in the Underground Subway Station with Screen-Door Opening and Closing (도시철도 역사 스크린 도어 개폐에 따른 냉방 기류 해석 및 효율 비교 분석)

  • Jang, Yong-Jun;Ryu, Ji-Min;Jung, Ho-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.328-335
    • /
    • 2014
  • Numerical prediction methods were applied to investigate the turbulent air currents and air-conditioning efficiency in an underground subway station, and the results compared to experimental data. The Shin-gumho Station($8^{th}$ floor underground and 43.6m in depth) in Seoul was selected for the analysis. The entire station was covered for simulation and the ventilation mode was ordinary. The ventilation diffusers were modeled as 95 square shapes of $0.6m{\times}0.6m$ in the lobby and as 222 square shapes in the platform. Cooling air of $47,316m^3/h$ was supplied and the returned air of $33,980m^3/h$ is exhausted in the lobby and the cooling air of $33,968m^3/h$ is supplied and the returned air of $76,190m^3/h$ was exhausted in the platform which is the same as the experimental data. The cases of the screen-door-closed and open were respectively investigated. A total of 7.5million grids were generated and the whole domain divided into 22 blocks for MPI efficiency of calculation. Large eddy simulation (LES) was applied to solve the momentum and energy equation.

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong ;Liangliang Kong ;Lei Huang ;Yong Su ;Xuewang Li;Liu Yang;Pengmin Ji ;Weiping Li ;Weizu Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.458-468
    • /
    • 2023
  • Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.