• Title/Summary/Keyword: PSD sensors

Search Result 50, Processing Time 0.032 seconds

Obstacle Negotiation for the Rescue Robot with Variable Single-Tracked Mechanism (가변트랙형 메커니즘의 재난구조 로봇(VSTR)을 위한 장애물 극복)

  • Choi, Keun-Ha;Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1222-1229
    • /
    • 2007
  • In this paper, we propose a new obstacle negotiation method for the rescue robot. The rescue robot has a variable geometry single-tracked mechanism, so it can maximize a contact length with ground for the adaptability to off-road and pursue a stable system due to the lower center of gravity. In this research, we add the basis of autonomous navigation, driving mode control based on obstacle detection, to the robot to realize automation of mode transformation. Obstacle detection using PSD(Position Sensitive Device) infrared sensors gives active transformation of the track shape. Finally, experimental results about mentioned are presented.

Performance of comparison of external-type UHF PD sensors for epoxy injection hole of barriers in GIS (GIS용 폐쇄형 스페이서의 에폭시 주입구용 UHF 부분방전 센서의 특성비교)

  • Hwang, Chul-Min;Koo, Ja-Yoon;Lee, Young-Sang;Park, Ki-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.104-106
    • /
    • 2004
  • GIS의 금속으로 차폐된 폐쇄형 스페이서(barrier)의 에폭시 주입구를 통해 방사되는 극초단파 부분방전 신호를 검출할 수 있는 외장형 UHF PD 센서를 제작하였다. 센서에 내장되는 패치안테나는 모노폴(monopole)과 다이폴(dipole) 형태로 설계하여 고주파 전자기장 해석 툴을 이용하여 각각의 특성을 계산하고 분석하였다. 제작된 센서는 362kV GIS의 차폐형 스페이서의 에폭시 주입구에 장착하고 각 센서의 PD 검출 감도와 주파수 특성을 측정하고 비교하였다.

  • PDF

Stability Analysis of an Mounting Equipment for External Pod on Aircraft by Road Test (항공기 외장형 포드 장착장비의 주행 안정성 분석)

  • Lee, Jong-Hak;Jang, Jong-Youn;Kang, Young-Sik;Choi, Ji-Ho;Kang, Dong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.424-429
    • /
    • 2013
  • The trolley carrying the pod moves along by the airfield runway. The pod through the trolley are subjected to vibration arising from the ground state, the precision optical components in the pod can have a significant impact. The road tests were conducted by using the measurement pod to remove the risk for the project. The measurement pod was composed with the ACRA, sensors, battery. The accelerometers were attached to get the acceleration through the road condition. The PSD envelop was calculated by FFT from the acceleration. The driving safety was proven through comparing the measurement data and MIL-STD-810G specification.

  • PDF

Implementation of a Fluxgate Sensor using Ferrite Ring Core (페라이트 링 코어를 사용한 fluxgate 센서의 구현)

  • Park, Yong-Woo;Kim, Ki-Uk;Kim, Nam-Ho;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.427-433
    • /
    • 1999
  • In this paper, we have presented an one-axis fluxgate magnetic sensor with ferrite core, excitation, and pick-up coil. This magnetometer is consist of a sensing element, driving circuits for excitation coil and signal processing for detecting second harmonic frequency component which is proportional to the DC magnetic to be measured. The sensor core is excited by a square waveform of voltage through 82 turns of the excitation coil. The second harmonic output of pick-up coil(150 turns) is measured by a FFT spectrum analyzer. This result is compared to output of PSD(phase sensitive detector) unit for detecting a second harmonic component. The measured sensitivity is about 50 V/T at driving frequency of 2 kHz. The nonlinearity of fluxgate magnetic sensor is calculated about 2.0%.

  • PDF

Characterizing the Performance of New Seismic Stations in Southeastern Region, Korea Using Seismic Noise Levels (배경잡음 수준 분석에 의한 동남권 신규 관측소 성능 특성 평가)

  • Shin, Jin Soo;Seong, Yun-Jeong;Son, Minkyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.321-327
    • /
    • 2019
  • We performed seismic noise level analysis to access the proper functioning of 11 newly established seismic stations in the southeastern region of Korea. One-hour long segments of seismograms were selected from the continuous data of the 3 elements for 61 days from March 1, 2019. For each segment of data, the power spectral density (PSD) was estimated from the continuous back ground noise data of the 3 elements for periods ranging from 0.02~100 s. The median noise levels (NLs) of the stations were compared with the new noise model (NNM) of USGS and NLs of station TJN installed in a tunnel on a granite basement. We observed that the NLs of the newly installed seismometers were between the upper and lower limit of the NNM. In a comparison with the noise level of station TJN, the new seismometers had their own noteworthy features. The NLs from accelerometers (Epi-sensors) were ~ 40 dB higher than the NLs from velocimeters (STS-sensors) for periods > 10 s, which is because the small and light Epi-sensors are sensitive to environmental changes. Daily and weekly variations in spectral noise level were observed clearly in short periods < 1 s, and these are considered to be related to human activities. The seismometers in boreholes showed ~20 dB weaker NLs in the cultural noise band. The NLs of accelerometers at a depth of 30 m were also much lower by 30 dB for long periods > 10 sec. Overall the functioning of the new velocimeter and accelerometer stations was reliable for periods ranging from 0.02~100 s and 0.02~10 s, respectively.

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF

Analysis of Traps Incidents of Metro Train Door by Human Factors (인적요인에 의한 도시철도 출입문 끼임사건 분석)

  • Pak, Tae Young;Oh, Hyun Soo;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.85-92
    • /
    • 2018
  • This study aimed to reduce of traps incident of metro train door by suggesting preventive actions throughout analyzing why railway drivers and passengers commit unsafe behaviors which are human factors making occurrence of the incidents. The incident cases were analyzed and Incident Tree was structured by brainstorming with safety experts. In addition, the questionnaire survey was conducted for comparison with the analysis results. As the result, this study suggested driver's factors, passenger's factors, and public relation plan for safe use of metro in order to reduce the frequency of the incidents. For driver's factors, implementing job-rotation systems between railway and non-railway drivers, installing Object Detection Sensors between the metro doors and PSD, and flexible operation of dwell time were suggested. For passenger's factors, placing a platform safety person, installing a safety fence in front of the stairs and the elevators, and country wide public relations through mass media were suggested.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.

Comparison of Vibration Characteristics of Cargo Bikes on General Roads and Bicycle Roads (일반도로와 자전거도로에서의 카고바이크 화물 적재함 진동 특성 비교)

  • Dong Yul Kim;Myenog Guk Yu;Heng Suk Lee;Sang Min Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.175-179
    • /
    • 2023
  • This paper analyzes the vibration characteristics within the cargo compartment of a three-wheeled cargo bike when used on both regular roads and dedicated bicycle lanes. When cargo is loaded into the cargo compartment of a cargo bike and driven on the road, the shocks and vibrations transmitted from the ground can potentially affect the transported goods and even lead to product damage. As the vibration characteristics applied to the cargo compartment may vary depending on the condition of the road, vibration sensors were attached to the cargo bike's cargo compartment for data collection during operation on different road types. According to KS T ISO 13355 standards, the cargo bike can withstand vibrations within the range of 10 Hz to 60 Hz when operating on both bicycle lanes and regular roads. However, it is observed that there are peaks exceeding the profile in the frequency range of 3-6 Hz. In the 70-200 Hz range, the profile is exceeded on both regular roads and bicycle lanes, with a tendency for higher exceedance on bicycle lanes. The Grms value within the frequency range of KS T ISO 13355 is 5.926 m/s2 (0.604 Grms). When operating on bicycle lanes with cargo, the Peak envelope optimization PSD value is 6.553 Grms, while on bicycle lanes, it is 7.708 Grms, indicating a difference of at least tenfold.