• Title/Summary/Keyword: PSD 비

Search Result 79, Processing Time 0.024 seconds

A Study on Sentiment Evaluation and Satisfaction of the Vertical Rope-type Platform Safety Door(RPSD) (로프타입 상하개폐 스크린도어의 감성평가 및 만족도에 관한 연구)

  • Park, Jungsik;Jung, Byungdoo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.462-472
    • /
    • 2014
  • As the Rope Type Platform Safety Door (RPSD) is now commercially available, the technology of RSPD and the public sentiment towards RPSD are being scrutinized. During the period of RPSD development and trial installation, there has been a need to examine its technical reliability and safety, and its users' emotional attitudes. Though often dichotomized in practice, technological innovation of, and the public sentiment towards RPSD are directly related to continuing and collaborated efforts to enhance public satisfaction with the service. Therefore, based on the analyses of public sentiment towards the RPSD system and the log files of operation, this study evaluates public satisfaction with RPSD during its trial phase at Munyang Station in the Daegu Subway System.

Multi frequency band noise suppression system using signal-to-noise ratio estimation (신호 대 잡음비 추정 방법을 이용한 다중 주파수 밴드 잡음 억제 시스템)

  • Oh, In Kyu;Lee, In Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper proposes a noise suppression method through SNR (Singal-to Noise Ratio) estimation in the two microphone array environment of close spacing. The conventional method uses a noise suppression method for a gain function obtained through the SNR estimation based on coherence function from full band. However, this method cause performance decreased by the noise damage that affects all the feature vector component. So, we propose a noise suppression method that allocates a frequency domain signal into N constant multi frequency band and each frequency band gets a gain function through SNR estimation based on coherence function. Performance evaluation of the proposed method is shown by comparison with PESQ (Perceptual Evaluation of Speech Quality) value which is an objective quality evaluation method provided by the ITU-T (International Telecommunications Union Telecommunication).

Estimation on the Depth of Anesthesia using Linear and Nonlinear Analysis of HRV (HRV 신호의 선형 및 비선형 분석을 이용한 마취심도 평가)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Hye-Jin;Kim, Tae-Kyun;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.76-85
    • /
    • 2010
  • In general, anesthetic depth is evaluated by experience of anesthesiologist based on the changes of blood pressure and pulse rate. So it is difficult to guarantee the accuracy in evaluation of anesthetic depth. The efforts to develop the objective index for evaluation of anesthetic depth were continued but there was few progression in this area. Heart rate variability provides much information of autonomic activity of cardiovascular system and almost all anesthetics depress the autonomic activity. Novel monitoring system which can simply and exactly analyze the autonomic activity of cardiovascular system will provide important information for evaluation of anesthetic depth. We investigated the anesthetic depth as following 7 stages. These are pre-anesthesia, induction, skin incision, before extubation, after extubation, Post-anesthesia. In this study, temporal, frequency and chaos analysis method were used to analyze the HRV time series from electrocardiogram signal. There were NN10-NN50, mean, SDNN and RMS parameter in the temporal method. In the frequency method, there are LF and HF and LF/HF ratio, 1/f noise, alphal and alpha2 of DFA analysis parameter. In the chaos analysis, there are CD, entropy and LPE. Chaos analysis method was valuable to estimate the anesthetic depth compared with temporal and frequency method. Because human body was involved the choastic character.

Effects of Behavioral Activation/Inhibition Systems and Positive/Negative Affective Sounds on Heart Rate Variability (행동활성화와 억제체계의 민감성과 긍정 및 부정감성 음향자극이 심박동변이도에 미치는 영향)

  • 김원식;조문재;김교헌;윤영로
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.41-49
    • /
    • 2003
  • To inspect how the different sensitivities in BAS(or BIS) modulate on the HRV pattern stimulated by positive or negative affective sound, we measured the electrocardiogram(ECG) of 25 students(male : 14), consisted of 4 groups depending on the BAS(or BIS) sensitivity, during listening meditation music or being exposed to noise. The power spectral density(PSD) of HRV was derived from the ECG, and the power of HRV was calculated for 3 major frequency ranges(low frequency[LF], medium frequency[MF], and high frequency[HF]). We found that the index of MF/(LF+HF), during listening music, was higher significantly in the individuals with a low BIS but high BAS than in the individuals with a low sensitivity in both BIS and BAS. Especially in the former group, there was a tendency that the index was higher during listening music than during being exposed to noise. For individuals with a high BIS, regardless of the BAS sensitivity, the difference of this index values was not significant. From these results we suggest that individuals with a low BIS but high BAS are more sensitive to positive affective stimuli than other groups, and the index of MF/(LF+HF) is applicable to evaluate positive and negative affects.

  • PDF

Computer Simulation and Optimization Study on the Pressure-Swing Distillation of 1-propanol-benzene Mixture (1-프로판올과 벤젠 혼합물의 압력변환 증류공정을 통한 전산모사 및 공정 최적화)

  • Park, Hoey Kyung;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.88-97
    • /
    • 2018
  • Computer modeling and optimization works have been performed for the separation of the binary mixture of 1-propanol and benzene through a pressure-swing distillation. PRO/II with PRIVISION V10.0 at Schneider Electric company and NRTL liquid activity coefficient model were utilized. The sum of the total reboiler heat duties of the low-high and high-low pressure column configurations were compared. To minimize the utility consumptions, low column, and high column to obtain pure benzene at the top, the number of theoretical stages and optimal feed tray locations for each distillation column were determined and the reflux ratios for each distillation column were also adjusted. As a result of the optimization works, the sum of the total reboiler heat duties for the high-low and low-high pressure configurations were $3.10{\times}10^6kcal/h$ and $2.75{\times}10^6kcal/h$, respectively. In the case where heat integration was applied to low-high pressure configurations, 57.36 % of the total reboiler heat duties could be saved compared to the high-low pressure configurations.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.

Asymmetric Activation in the Prefrontal Cortex and Heart Rate Variability by Sound-induced Affects (음향감성에 의한 전전두엽의 비대칭성과 심박동변이도)

  • Jang Eun-Hye;Lee Ji-Hye;Lee Sang-Tae;Kim Wuon-Shik
    • Science of Emotion and Sensibility
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • This study is aimed to inspect how the different sensitivities in Behavioral activation system(BAS) and behavioral inhibition system(BIS) modulate on the properties of physiological responses stimulated by positive or negative affective sound. We measured the electroencephalogram(EEG) and electrocardiogram (ECG) of 32 students, consisted of four groups depending on the BAS and BIS sensitivities, during listening to meditation music or noise. The EEG was recorded at Fpl and Fp2 sites and Power spectral density(PSD) of HRV was derived from the ECG, and the power of HRV was calculated for 3 major frequency ranges(low frequency[LF], medium frequency and high frequency[HF]). After listening to music or noise, subjects reported the affect induced by the sound. For EEG, the power in the alpha band at Fp2, especially in the alpha-2 band(9.0-11.0 Hz) increased during the subjects listening to music, while the power at Fpl increased during noise. During listening to meditation music, there is a tendency that the left-sided activation in prefrontal cortex(PFC) is positively correlated with the difference of BAS(Z)-BIS(Z). During listening to noise, there is a tendency that the right-sided activation in PFC is dominant in case any of the sensitivity of BAS or BIS is high. For HRV, we found that the index of MF/(LF+HF), during listening to music, was higher significantly in the individuals with a low BIS but high BAS than in the individuals with a low sensitivity both BIS and BAS individuals. With high BIS, regardless of the BAS sensitivity, the difference of this index values was not significant. From these results we suggest that the physiological responses of different individuals in BAS and BIS react differently under the same emotionally provocative challenge.

  • PDF

Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea (대자율이방성(AMS) 분석을 통한 석재 결의 파악: 거창 화강석에서의 사례 연구)

  • Cho, Hyeongseong;Kim, Jong-Sun;Kim, Kun-Ki;Kang, Moo-Hwan;Sohn, Young Kwan;Lee, Youn Soo;Jwa, Yong-Joo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.209-231
    • /
    • 2015
  • In granite quarry, stones are generally quarried along easily separating planes called as 'rock cleavage'. Because orientation and characteristics of the rock cleavage are directly involved with easy quarrying, it is the most important factor on selecting a direction of digging. Using AMS (anisotropy of magnetic susceptibility), we attempt to interpret rock fabrics in Geochang Granite Stone (JS, SD, AR, GD, BW, MD quarry) and discuss about determination of rock cleavages and correlation between the rock fabrics and cleavages. Based on mean susceptibility, thermo-susceptibility curves, and hysteresis parameters, Ti-poor MD and/or PSD magnetites are the main contributor to AMS of the granite stones. The systematic magnetic foliations with sub-vertical dip angle are developed in the whole granite quarries. In most of the granite quarries, the magnetic foliations are significantly consistent with grain plane. In the BW quarry, which has higher $P_J$ values than the others, the magnetic foliations coincide exceptionally with rift plane. These results suggest that rock cleavages in granite stone are related to rock fabrics meaning shape and spatial arrangement of crystals. Magnetic fabrics analysis using AMS method, therefore, can be a quantitative and effective tool for determination of rock cleavages in granite quarry.

Engineering Performance of Extruded Fly Ash Cement Panel with Bottom Ash (잔골재로서의 바텀애시를 사용한 플라이애시 시멘트 압출경화체의 공학적 특성)

  • Lee, Myeong-Jin;Kim, Jin-Man;Han, Dong-Yeop;Choi, Duck-Jin;Lee, Keun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • The aim of this research is providing the fundamental data for treating and recycling the byproducts by using the wet processed bottom ash as a fine aggregate replacement for cement-based extruded panel. Although the cement-based extruded panel was used mainly as a cladding component with its high strength and outstanding durability, it was hardly spread because of low economic feasibility due to the high cost of additives or fibers which were used to achieve 14 MPa of flexural strength as a cladding material. As a solution of this drawback, by the previous research, it was possible to replace cement by fly ash up to 80 % by decreasing quality criteria with restricting the application to indoor purpose. In this research, based on the previous research, by using the bottom ash as a replacement of fly ash, improvement of shape retention performance is tried. As a result of the experiment on evaluating the optimum content and PSD of bottom ash, as the fineness modulus and content of bottom ash was increased, the extruding performance was decreased and penetration resistance was increased. Additionally, the optimum content and the maximum particle size was found as 20 %, and 0.3 mm, respectively.