• Title/Summary/Keyword: PSC bridges

Search Result 287, Processing Time 0.024 seconds

Magnetic Hysteresis Monitoring according to the Change of Tensile Force and Steel Class of PS Tendons (PS 텐던 강종별 긴장력 변화에 따른 자기이력 모니터링)

  • Kim, Junkyeong;Park, Seunghee;Lee, Hwanwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • This paper introduces a magnetic hysteresis monitoring result to apply an EM sensing technique for estimating tensile force of PSC girder to various class of PS tendon. The tensile force of PS tendon is a very important factor in the performance evaluation of PSC bridges. However, in this time, the tensile force was just measured only during construction and it does not monitored after construction. To measure the tensile force of PS tendons, the EM sensing based NDT method was developed but the proposed method cannot be applied to various class of PS tendons. Thus this study performed the magnetic hysteresis measurement according to the tensile force for class B, C and D PS tendons through experimental study. The specific tensile forces(50, 100, 150, 180kN) were induced to the each specimens and the magnetic hysteresis curve was measured at each point. The permeability of specimens were gradually decreased according to increase of tensile force. Especially, the slopes of permeability variation of class B and C were similar while that of class D was different.

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.

Evaluation on Behavioral Characteristics of PSC Integral Abutment Bridge (PSC 일체식 교대 교량의 거동특성 평가)

  • Ahn, Jin-Hee;Yoon, Ji-Hyun;Kim, Sang-Hyo;Kim, Jun-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.361-373
    • /
    • 2010
  • Bridges constructed without any expansion joint or bridge bearing are called integral abutment bridges. They integrate the substructure and the superstructure. Possible deformation of the superstructure, due to changes in temperature for example, is prevented by the bending of the piles placed at the lower part of the abutment. This study examines the behavior of integral abutment bridges through soil-pile interaction modeling method and proposes an appropriate modeling method. Also, it assesses the behavior characteristics of the superstructure and piles of integral abutment bridges through parametric study. Soil condition around the pile, abutment height, and pile length were selected as parameters to be analyzed. Structural analysis was conducted while considering the interactions of soil-pile and temperature change-earth pressure on the abutment. Comparative behavior analysis through soil-pile interaction modeling showed that elastic soil spring method is more appropriate in evaluating the behavior of integral abutment bridges. The parametric study showed the tendency that as the soil stiffness around the pile increases, the moment imposed on the superstructure increases, and the displacement of the piles decreases. In addition, it was observed that as the bridge height increases, the earth pressure on the abutment increases and that in turn affects the behavior of the superstructure and piles. Also, as the length of the pile increased, the integral bridge showed more flexible behavior.

Feasibility Analysis of the Bridge Analytical Model Calibration with the Response Correction Factor Obtained from the Pseudo-Static Load Test (의사정적재하시험 응답보정계수에 의한 교량 해석모델 보정의 타당성 분석)

  • Han, Man-Seok;Shin, Soo-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.50-59
    • /
    • 2021
  • Currently, the response correction factor is calculated by comparing the response measured by the load test on a bridge with the response analyzed in the initial analytical model. Then the load rating and the load carrying capacity are evaluated. However, the response correction factor gives a value that fluctuates depending on the measurement location and load condition. In particular, when the initial analytical model is not suitable for representing the behavior of a bridge, the range of variation is large and the analysis response by the calibrated model may give a result that is different from the measured response. In this study, a pseudo-static load test was applied to obtain static response with dynamic components removed under various load conditions of a vehicle moving at a low speed. Static response was measured on two similar PSC-I girder bridges, and the response correction factors for displacement and strain were calculated for each of the two bridges. When the initial analysis model was not properly set up, it is verified that the response of the analytical model corrected by the average response correction factor does not fall within the margin of error with the measured response.

Estimation of Friction Coefficients Based on Field Data (실측값에 근거한 마찰계수의 추정)

  • Jeon, Se Jin;Park, Jong Chil;Park, In Kyo;Shim, Byul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.487-494
    • /
    • 2009
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, the ranges of the friction coefficients presented in domestic and foreign specifications are compared together to clarify the differences. Then, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data such as elongation and prestressing force and from theory related to the friction. The procedure is applied to various tendon profiles of several PSC bridges constructed by ILM, FCM and MSS. The resulting values are compared with those presented in some specifications and assumed in jacking and a reasonable range of the friction coefficient is discussed. Lift-off tests are also performed in some bridges to further verify the results. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but range from the lower limit to mid point of domestic specifications, while the curvature friction coefficients approach or slightly exceed the upper limit.

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

The Analysis of Cracks in PSC Girder Using High Flowing Concrete (고유동 콘크리트를 사용한 PSC 거더 균열 분석)

  • Lho, Byeong Cheol;Ahn, Gwang Su;Kwak, Kil Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.126-135
    • /
    • 2013
  • Recently, mass concrete with high flowability are widely used to improve the quality and constructability in the longer span construction of prestressed concrete bridges, but it may induce nonstructural cracks due to the hydration heat and autogenous shrinkage etc. The stresses in concrete were evaluated by various experiments and numerical analysis. The tensile stress in mass concrete was increased in connection with the accumulation of hydration heat. Moreover, large amount of autogenous shrinkage from powder type admixture could add the tensile stress to mass concrete near anchorage zone. The tensile stresses in anchorage zone by heat and autogenous shrinkage exceeded the tensile strength of early stage of concrete, and small amounts of stress increasement were shown in other parts of PSC girder.

Fragility Curve of PSC Box Girder Bridge using Isolator (면진 받침을 사용한 PSC Box Girder 교량의 손상도 곡선)

  • Lee, Jongheon;Kim, Woonhak;Seo, Sangmok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.36-46
    • /
    • 2012
  • After the east Japan earthquake last March 2011, social interests are intensified in the area of increasing the earthquake resistant ability and the necessity of design method that can minimize the damage from earthquake. If bridges are damaged or collapsed, the social and economic effects are so severe that the evaluation of earthquake resistant ability becomes very important. The reviewing methods for earthquake resistant ability are many, but majority of these methods are deterministic. Thus, for the safety assessment of structures for earthquake, the method for evaluating fragility according to the stage of damage is necessary. In this paper, the fragility curves for PSC Box Girder bridge using LRB and RFPB are constructed for PGA, PGV, SA, SV, SI and the two isolators are compared.

Evaluation of Friction Coefficients of Prestressing Tendon Using Field Data (실측값을 활용한 긴장재 마찰계수의 산정)

  • Jeon, Se-Jin;Park, In-Kyo;Kim, Kwang-Soo;Lee, Man-Seop;Cho, Jae-Yeol;Park, Chan-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.297-300
    • /
    • 2008
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data and classical theory related to the friction. The procedure is applied to two PSC girder bridges with various tendon profiles. The resulting values are compared with those presented in some specifications and assumed in jacking. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but are more or less similar to the lower limit of domestic standards, while the curvature friction coefficients approach or slightly exceed the upper limit of the same standards.

  • PDF