• Title/Summary/Keyword: PSC I girder bridge

Search Result 69, Processing Time 0.027 seconds

Girder Section of Continuous Bridges Spliced by Partial Post-Tensioning (부분 포스트텐션닝 방법에 의해 연속화된 교량의 주형단면)

  • 이환우;곽효경;송영용
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • In this paper, a new splicing method was applied to design the girder section of bridges with the span length of 25m, 30m, 35m, 40m and 45m. A U-type precast prestressed section was also determined for each bridge. Additionally, the sectional area, beam depth and Guyon's efficiency factor of the spliced U-type sections in each span were analyzed in comparison with the present I-type PSC bridges. As a result, in spite of an increase of 31%∼50% in the sectional areas compared with the I-type precast girders, the spliced U-type the beam depth of the spliced U-type girder was designed as 2,050 mm compared with the I-type precast girder of 2,600mm in a 40m span bridge. The sectional efficiency factors of the spliced U-type sections were analyzed as 0.76∼0.99. It shows that the spliced U-type sections ar of a superior structural efficiency in contrast to the average sectional efficiency factor of 0.66 value in the I-type girders.

Experimental Evaluation for Damping Ratio Limit of Railway Bridge according to Structure Types (철도교량 구조형식별 감쇠비 하한값 산정을 위한 시험적 연구)

  • Min, Rak-Ki;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • The damping ratio of railway bridge has become one of the most important issues in dynamic design and dynamic stability of railway bridge. In the present study, laboratory and field test were performed for railway bridges such as a twin I-shaped steel composite girder, PSC box, steel box, PSC, IPC, PRECOM, preflex. The damping ratio of railway bridge according to structure types was estimated by logarithmic decrement method. Therefore, magnitude, frequency and amplitude of load did not affect damping ratio of railway bridge. Also, damping ratio limit of steel composite and PSC bridges was evaluated in 1.0%.

Experimental Study on Structural Behavior of Precast PSC Curved Girder Bridge (프리캐스트 PSC 곡선 거더교의 구조거동에 대한 실험적 연구)

  • Kim, Sung Jae;Kim, Sung Bae;Uhm, Ki Ha;Kim, Jang Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1731-1741
    • /
    • 2014
  • Recently, many overpasses, highway, and advanced transit systems have been constructed to distribute the traffic congestion, thus small size of curved bridges with small curvature such as ramp structures have been increasing. Many of early curved bridges had been constructed by using straight beams with curved slabs, but curved steel beams have replaced them due to the cost, aesthetic and the advantage in building the section form and manipulating the curvature of beams, thereby large portion of curved bridges were applied with steel box girders. However, steel box girder bridges needs comparatively high initial costs and continuous maintenance such as repainting, which is the one of the reason for increasing the cost. Moreover, I-type steel plate girder which is being studied by many researchers recently, seem to have problems in stability due to the low torsional stiffness, resulting from the section characteristics with thin plate used for web and open section forms. Therefore, in recent studies, researchers have proposed curved precast PSC girders with low cost and could secured safety which could replace the curved steel girder type bridges. Hence, this study developed a Smart Mold system to manufacture efficient curved precast PSC girders. And by using this mold system a 40 m 2-girder bridge was constructed for a static flexural test, to evaluate the safety and performance under ultimate load. At the manufacturing stage, each single girder showed problems in the stability due to the torsional moment, but after the girders were connected by cross beams and decks, the bridge successfully distributed the stress, thereby the stability was confirmed. The static loading test results show that the initial crack was observed at 1,400 kN when the design load was 450 kN, and the load at the allowable deflection by code was 1,800 kN, which shows that the safety and usability of the curved precast PSC bridge manufactured by Smart Mold system is secured.

Evaluation of Bursting Behavior in Anchorage Zone of PSC I Girders (PSC I 거더의 정착부 파열거동 평가)

  • Choi, Kyu Chon;Park, Young Ha;Paik, In Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.329-336
    • /
    • 2010
  • An experimental study to evaluate bursting behavior in anchorage zone of the standard PSC I girders (span length : 30 m) has been carried out. The arrangement of bursting reinforcement in anchorage zone of the standard PSC I girders is considered to be designed without accurately reflecting the stress flows in the end zone of the PSC I girders caused by presstressing forces of the tendons. Also, due to excessive arrangement of the bursting bars, the workability of the girder is decreased greatly. In this study, three specimens with the same dimensions as the end zone of the standard PSC I girder are prepared and the experiment is carried out by applying PS forces. The bursting reinforcement of each specimen consists of 100 mm, 200 mm, and 300mm spacings, respectively. The experimental results show that the range of the PS forces to cause crack in the anchorage zone of the specimen are more than 1.6 times of the design PS forces. The bursting cracks occur in the vertical direction on the inside of all specimens. After applying 2.7 times of the design PS force, some of the transverse bursting reinforcements only in the specimen reinforced by 300 mm spacing yielded. The experimental results show that the anchorage zone of the standard PSC I girders arranged by 300 mm spacing of the bursting reinforcements which is the maximum spacing allowed in the road bridge design specifications, can be considered safe enough.

Examination of Value Engineering for Bridge Superstructures using Analytic Hierarchy Process (AHP 기법을 이용한 교량상부구조의 VE 검토)

  • Park, Jang-Ho;Shin, Yung-Seok;Ahn, Ye-Jun;Lee, Kwang-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.79-85
    • /
    • 2009
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types(Steel box girder, Rational girder, PSC-I girder) using Value Engineering(VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost(LCC). Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process(AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

Dynamic Behaviors of Skewed Bridge with PSC Girders Wrapped by Steel Plate

  • Rhee, In-Kyu;Kim, Lee-Hyeon;Kim, Hyun-Min;Lee, Joo-Beom
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper attempts to extract the fundamental dynamic properties, i.e. natural frequencies, damping ratios of the 48 m-long, $20^{\circ}$ skewed real bridge with PSC girders wrapped by a steel plate. The forced vibration test is achieved by mounting 12 Hz-capacity of artificial oscillator on the top of bridge deck. The acceleration histories at the 9 different locations of deck surface are recorded using accelerometors. From this full-scaled vibration test, the two possible resonance frequencies are detected at 2.38 Hz and 9.86 Hz of the skewed bridge deck by sweeping a beating frequency up to 12 Hz. The absolute acceleration/energy exhibits much higher in case of higher-order twist mode, 9.86 Hz due to the skewness of bridge deck which leads asymmetric situation of vibration. This implies the test bridge is under swinging vertically in fundamental flexure mode while the bridge is also flickered up and down laterally at 9.86 Hz. This is probably by asymmetric geometry of skewed deck. A detailed 3D beam-shell bridge models using finite elements are performed under a series of train loads for modal dynamic analyses. Thereby, the effect of skewness is examined to clarify the lateral flickering caused by asymmetrical geometry of bridge deck.

  • PDF

An Experimental Study for Performance of PSC-I Girders with 60MPa High-Strength Concrete (설계강도 60MPa급 고강도 PSC의 내하성능 검토)

  • Lee, Jae-Yong;Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.9-12
    • /
    • 2008
  • PSC-I girder is widely used in designing bridge. Currently partial advanced country have constructed bridge with high strength concrete, while in-country rather less concrete strength(40MPa) has been used to build bridge girder. So, this paper presents characteristics and behavior of member casted by high strength concrete to apply practically. For this aim, 4 girders were fabricated to investigate performance and structural behavior. Prior to test, structural analysis was performed with common program. Steel gages and concrete gage were filled up to measure longitudinal and vertical strain of reinforcement and concrete. Linear Variable Differential Transducer and concrete surface gage were also set to measure deflection and strain of concrete. Load-deflection relation and crack mode were analyzed at transfer and test and compared with the structural analysis

  • PDF

AHP 기법을 이용한 교량상부구조의 VE 검토

  • Park, Jang-Ho;Sin, Yeong-Seok;An, Ye-Jun;Lee, Gwang-Gyun
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.52
    • /
    • pp.58-66
    • /
    • 2011
  • This study presents an algorithm to select the best alternative plane among various bridge superstructure types (Steel box girder, Rational girder, PSC-I girder) using Value Engineering (VE). Economical efficiency, landscape, constructability, maintenance, stability, function of bridge superstructure were taken into consideration in the designing of bridge. Economical efficiency was evaluated for each alternative plan with optimal design considering Life Cycle Cost (LCC), Repair and rehabilitation histories and some factors were set to get reasonable results. In the application of Analytic Hierarchy Process (AHP), consistency of Pairwise Comparisons Matrix was evaluated and the best plan was determined.

  • PDF

Carbonation Assessment for Superstructure of Bridge Used in Urban Area for 46-Years by Core Specimens Extracted from the Structure (도심지에서 46년 사용된 교량 상부구조물에서 채취한 코어를 통한 탄산화 실태조사)

  • Kwon, Seung-Hee;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.151-157
    • /
    • 2019
  • Concrete bridge constructed in metropolitan cities has different superstructure members like slabs and girders, and their carbonation depths vary with different design strengths and local environmental conditions. In this paper, 54 concrete cores were obtained from prestressed concrete girders and the related tests were performed for compressive strength and carbonation depth measurement. Referred to the specified compressive strength of 24MPa for slab and 35MPa for I-type girder, the strengths from cores were evaluated to 82% and 73% of design grade, respectively. For carbonation depth, the slab member showed 30.6mm of average with 32.9% of COV(Coefficient of Variation) and I-type girder showed 16.7~17.0mm with 22.8~33.6 of COV. The I-type girder has much lower carbonation depth and COV compared to slab member, however it has higher COV than column structures.

Destructive Load Testing of Prestrissed Concrete Girder Bridge (PSC 거더교의 파괴실험)

  • Oh, Byung-Hwan;Kim Kwang-Soo;Lew, Young;You, Dong-Woo;Kim, Do-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.470-475
    • /
    • 2000
  • This research covers the resting of precast/prestressed concrete I-Girder bridge. The research was designed to examine processes for improving the condition evaluation and rating of prestressed concrete bridge. To establish procedures that allow for the full utilization of prestressed concrete bridge capacity, a 28-year old sample was loaded to failure in site. The bridge was constructed with 12 spans, and girders of each span were simply supported. At each loading stage, the deflections, reinforcement strains, prestressing wire strains and concrete strains were examined. Failure behavior was analyzed, and failure load was also evaluated. The test results wee compared to the analytical results from the non-linear finite element analysis.

  • PDF