• Title/Summary/Keyword: PSC Box-girder

Search Result 145, Processing Time 0.03 seconds

An Experimental Study for Structural Safety Evaluation of PSC Box Girder Bridge with FRP Struts (FRP 스트럿을 가진 PSC 박스거더교의 구조안전성 평가를 위한 실험 연구)

  • Song, Jae-Joon;Park, Jong-Hwa;Park, Kyung-Hoon;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.205-213
    • /
    • 2008
  • The structure of PSC box girder with FRP strut has a form of supporting the cantilever part in the widened upper slab by modifying the existing PSC box girder efficiently, and it is able to build an economical and aesthetically pleasing bridge as it reduces the size of the lower structure by reducing the self-weight of the upper structure. In this research, loading test of PSC Box Girder using full-scale mock-up was conducted and FEM analysis was performed. By comparing results, structural safety of the FRP strut and the upper slab following application of the strut in the PSC Box Girder Bridge were evaluated.

A Case Study on the Life Cycle Cost Analysis of Steel Box Girder and Prestressed Concrete Box Girder Bridge (Steel Box교와 PSC Box교의 LCC 분석에 관한 사례연구)

  • Ahn Jang-Won;Cha Kang-Suk;Kim Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.2 s.6
    • /
    • pp.59-67
    • /
    • 2001
  • The purpose of this study is to evaluate economics by the Life Cycle cost(LCC) analysis of Steel Box Girder and Prestressed Box Girder bridge types. The study has been performed as a case study. A questionnaire survey for the repair and replacement cycle has been done in order to predict operation and maintenance costs. For LCC analysis and comparison, the present value technique is used. The results of this study are summarized as follows: (1) A LCC analysis model of Steel Box Girder and Prestressed Box Girder bridge types is suggested through a case study. (2) The repair and replacement cycle of elements of them are investigated using a questionnaire survey. (3) As a result of LCC case study, the type of Prestressed Box Girder bridge is analyzed more economic than Steel Box Girder.

  • PDF

A Study on Design for Anchorage Zone in PSC Box Girder Bridge Using Strut-Tie Model (스트럿-타이 모델을 이용한 PSC 박스거더교량의 정착부 설계 연구)

  • 이주하;윤영수;이만섭;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.625-630
    • /
    • 2002
  • PSC box girder is widely used in a domestic bridge and overpass, etc., therefore, the design and construction technique for the PSC box girder is developing day by day. Even if it were so, however, the design for anchorage zone in PSC box girder has depended on common sense and empirical results. And it is the current situation that the designer has difficulty due to inadequacy of provisions in the domestic design code and lack of understanding for behavior of anchorage zone. Besides, the design based on Leonhardt's method is being done in general, but the design may be various even for the same structure because of the difference in a way of applying. In this paper, therefore, anchorage zone in PSC box girder bridge is analyzed and designed by using strut-tie model. Adequacy for the application of strut-tie model is verified by comparison with the way used in current design practice, and this study presents that strut-tie model can be a rational and an economical design than current design methods.

  • PDF

Temperature Analysis of PSC Box-girder Bridges Using Inverse Thermal Analysis Program (온도분포 역해석 프로그램을 이용한 PSC 박스거더 교량 단면의 온도 분포 해석)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Myung-Kue
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.95-101
    • /
    • 2006
  • It is well known that the thermal load in PSC(prestressed concrete) box-girder bridge is the principal cause of detrimental crack. The longitudinal stress caused by the lateral stress from the temperature gradient in slab of PSC box-girder bridge has a considerable influence on the durability and economy of bridge structures. As the basic study for the rational consideration of thermal load and the derivation of design guide, the inverse thermal analysis program for PSC box-girder bridges using field measurement data is developed. In this paper, thermal analyses are performed using field monitoring data for the sample PSC box-girder bridge. It is proposed that the link between monitoring program and the inverse analysis program is available.

Prediction of Jacking Force Loss for Serviced High Speed Railway PSC BOX Bridge Using Constant Deflection (상시처짐을 이용한 공용중인 고속철도 PSC BOX교의 긴장력 손실 예측)

  • Jung-Youl Choi;Tae-Keun Kim;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.549-555
    • /
    • 2023
  • Jacking force loss management inside the PSC Box girder of a common high-speed railway is a very important feature in girder performance, and requires detailed management during the maintenance of the girder. This study aimed to analyze the timing of re-tension prediction of PSC Box girder based on the reduction level of the packing force inside the girder and the results of the tension loss measured without the train load test. As a result of predicting the timing of re-tension according to the level of tension reduction of the PSC Box Girder, the Jacking Force Loss curve was gently analyzed before the structure reached 17 years after confirmed completion, and 17 years later, it was found that the jacking force loss curve progressed rapidly. The results confirmed that the tension of the structure decreases with the service life increase, but considerably decreases as the structure ages. Therefore, more data and research on tension loss of facilities over 20 years are much required.

Optimum Design Algorithms for PSC Box-Girder Bridges Using a Reduced Basis Technique (기저함수 감소기법을 이용한 프리스트레스트 콘크리트 박스거더교의 최적설계 알고리즘)

  • 조효남;민대홍;김환기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.235-242
    • /
    • 2001
  • An optimization algoriam for the optimum design of prestressed concrete (PSC) box girder bridges is proposed in this paper. In order to optimize the tendon profile efficiently, a reduced basis technique is introduced. The optimization algorithm which includes the tendon profile, tendon size and concrete dimensions optimization problem of the PSC box girder bridges is verified on the Genetic algorikhm (GA) from the numerical examples. it may be positively stated that the optimum design of the PSC box girder bridges based on the new approach proposed in this study will lead to more rational and economical design compared with the currently available designs.

  • PDF

Development of the Program Checking the Constructible Possibility of Prestressed Concrete Box Girder Bridges (PSC 박스 거더교의 시공성 검사 프로그램 개발)

  • 김병석;김영진;강재윤;한석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.701-705
    • /
    • 1998
  • The objective of this study is to develop the practical program which can check the constructible possibility of prestressed concrete box girder bridges for design. Checking constructible possibility is defined as checking the interference of each elements in a PSC box girder bridge and computing the distances of each elements. To check the constructible possibility of a PSC box girder bride, bridge must be modelled using solid in three dimension. By using a 3 dimensional solid modeling system, engineers can get the photo realistic 3D viewing images of the bridge and produce FEM analytic model of it. Users can manipulate their drawings easier and take off quantity of the whole structure and its elements as well as check the constructible possibility of their PSC box girder bridges.

  • PDF

Verification of Manufacturing Process of PSC Box Girder Bridge Segment by 3D Simulation (3차원 시뮬레이션을 활용한 PSC 박스거더교 세그먼트 제작 공정의 검증)

  • Kim, Min-Seok;Son, Heung-Rak;Lee, Kwang-Myong;Park, Young-Ha;Park, Min-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.235-240
    • /
    • 2008
  • PSC box girder bridges are built through the repetitive manufacturing process of concrete segment. However, during the initial segment manufacturing stage, design change may occur frequently due to design errors and interferences between components, resulting in the extension of segment manufacturing period. This paper aims to verify the manufacturing process of PSC box girder segment by 3D simulation technique. All the components of a segment were modelled and assembled by simulation technique and then, some design errors were found and revised appropriately to optimize the manufacturing process of segment. Consequently, 3D simulation technique would be promising to improve the quality of the segment and to reduce its manufacturing time and cost.

  • PDF

Static Load Test and Nonlinear Analysis on the PSC Box Girder Bridges with Reduced Reinforcements (철근 물량이 절감된 PSC박스거더교에 대한 정적재하실험 및 비선형해석)

  • 정광회;구현본;김성태;박성룡;박성용;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.591-594
    • /
    • 2003
  • It is reported that the amount of reinforcements for domestic PSC box girder bridges is used two times more that those for foreign PSC box girder bridges, which is considered to be irrational and uneconomical. Therefore, we have come to the conclusion through this study that the advanced design direction can reduce the amount of reinforcements under the condition that the static load test and the nonlinear analysis for the specimen of the PSC box girder bridge with reduced reinforcements which is designed by advanced design direction was carried out in order to verify the validity of the advanced design direction.

  • PDF

Minimization of Bursting Force at Anchorage Zone Using Prestressing Order for PSC Box Girder Bridge (PSC 박스거더교 정착부의 최소파열력에 대한 강선긴장순서)

  • Chung, Jee-Seung;Koo, Hyoung-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.103-109
    • /
    • 2001
  • In this paper, the prestressing order of tendons is studied to minimize a bursting force of an anchorage. The bursting forces is a primary factor of anchorage failures. The forces of the anchorage depend on the prestressing order and size of the tendons, if a lot of tendons are introduced to the anchorage. Many studies have been made to analyze the bursting force of the anchorage. However, the studies have been limited to the bursting forces of the anchorage having one or two tendons. PSC box girder bridges usually have a lot of tendons. And the difference of the bursting forces lies in the prestressing order of the tendons. As a result of the lack of studies on the prestressing order for the bridges, the order depends on the designer's intuition and experiences. It may be stated that this study should be useful for determining the reasonable prestressing order of tendons for the PSC box girder bridges.

  • PDF