• Title/Summary/Keyword: PSA 공정

Search Result 113, Processing Time 0.026 seconds

Preparation and characterization of CoAl2O4 blue ceramic nano pigments by attrition milling (어트리션밀을 이용한 CoAl2O4 나노 무기 안료의 제조 및 특성 평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.255-264
    • /
    • 2013
  • Cobalt aluminate ($CoAl_2O_4$) is a highly stable pigment with excellent resistance to light, weather, etc., which has resulted in widespread use as a ceramic pigment. Due to the unique optical characteristics, $CoAl_2O_4$ is generally used as a coloring agent to decorate porcelain products, glass, paints and plastics. Here, $CoAl_2O_4$ pigments were synthesized by polymerized complex method and solid state reaction. Then $CoAl_2O_4$ pigment were grinded using the attrition milling with 1 mm size zirconia ball for 3 hours. The attrition milling process was performed at the constant speed of 800 rpm and ball to powder weight ratio (BPR) was 100 : 1. The characteristics of synthesized pigment were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), particle size analyser (PSA) and CIE $L^*a^*b^*$. The XRD patterns of $CoAl_2O_4$ show single phase spinel structure. The particle size of $CoAl_2O_4$ measured by FE-SEM, TEM and PSA analysis was in the range of 100~200 nm. The blue color of obtained $CoAl_2O_4$ pigments could be confirmed through CIE $L^*a^*b^*$ measurement.

Conceptual design for the Production of Hydrogen in Coal Gasification System (석탄 가스화에 의한 수소 제조공정 개념설계)

  • Lee, Yun-Ju;Na, Gi-Pung;Park, Moon-Ju;Lee, Sang-Deuk;Hong, Suk-In;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.258-261
    • /
    • 2008
  • 상용공정 모사기인 PRO-II를 이용하여 석탄 가스화에 의한 수소 제조공정 개념설계를 수행 하였다. 이 공정은 공기분리(ASU), 석탄가스화, 가스정제, 고온 WGS 반응, 저온 WGS 반응, 수분제거, $H_2$분리, $CO_2$ 분리, $CH_4$ 분리(PSA) 등으로 구성되어 있다. 가스화기의 모사조건은 온도 $1200{\sim}1500^{\circ}C$, 압력 $15{\sim}30atm$, 공급몰비 C:$H_2O$:$O_2$=1:0.5$\sim$1:0.25$\sim$0.5로 하였으며, 정제공정의 온도와 압력은 각각 $550^{\circ}C$, 24.5atm으로 하였다. 생성된 합성가스는 WGS(HTS($400^{\circ}C$, 24atm), LTS($250^{\circ}C$, 23.5atm)) 반응을 거쳐 고순도 수소로 분리정제된다. 석탄을 10ton/day으로 공급하였을 때, 804.0kmol/day의 수소가 생성되었으며, 이때 가스화기 조건은 $1500^{\circ}C$, 25atm, 공급몰비 C:$H_2O$:$O_2$ = 1:0.58:0.43이었다.

  • PDF

Hydrogen production by plasma pyrolysis-gasification of waste (폐기물의 플라즈마 열분해-가스화에 의한 수소생산)

  • Lee, Jin-Ho;Kim, Young-Suk;Do, Chul-Jin;Hwang, Soon-Mo;Jeong, Seong-Jae
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.77-89
    • /
    • 2007
  • 폐기물의 플라즈마를 이용한 열분해-가스화-용융 처리공정은 청정연료 형태로 정화된 합성가스를 얻을 수 있고, 이 합성가스를 WGS 반응과 PSA 공법을 이용하면 고순도 수소로의 전환 및 회수가 가능하다. (주)애드플라텍에서는 자체 보유하고 있는 3톤/일급 플라즈마 폐기물 처리설비와 수소 정제/회수시스템을 연계하여, 페기물로부터 고순도 수소 생산($20Nm^3/h$이상)을 위한 플라즈마 폐기물 처리 추소 생산 통합시스템 개발을 진행하고 있다. 합성가스 내 질소 농도를 낮추기 위해 산소를 매질로 하는 100kw급 산소 플라즈마 토치를 제작하였다. 수소 정제/회수 시스템은 폐기물의 플라즈마 처리 후의 합성가스 생성량과 조성의 변화에 대응할 수 있도록 하였으며, WGS 반응기로 들어가는 합성가스를 가스 컴프레서를 통하여 최대 10기압으로 승압시키고, 고농도 일산화탄소의 효과적인 제거 및 열 회수 극대화가 이루어질 수 있는 최적의 가스처리 시스템으로 구현되도록 하였다. 설치 완료된 WGS 반응기의 성능시험을 플라즈마 처리설비와 연계하여 수행하였다. 합성가스 내 각각 34%와 25%의 일산화탄소 및 수소의 농도가 WGS 반응기를 거친 후, 일산화탄소는 0.1% 미만으로 제거되었으며 수소는 44%로 증가하여 WGS 반응기의 성능 수준이 매우 우수함을 확인하였다. 차기 년도에 설치/가동 예정인 수소 생산용 PSA는 최대 10기압 운전 및 상압재생 방식으로 운전되며 생산된 수소는 최소 99.99%이상의 고순도를 유지할 것으로 기대된다.

  • PDF

Hydrogen production by plasma pyrolysis-gasification of waste (폐기물의 플라즈마 열분해-가스화에 의한 수소생산)

  • Lee, Jin-Ho;Kim, Young-Suk;Do, Chul-Jin;Hwang, Soon-Mo;Jeong, Seong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.627-632
    • /
    • 2007
  • 폐기물의 플라즈마를 이용한 열분해-가스화-용융 처리공정은 청정연료 형태로 정화된 합성가스를 얻을 수 있고, 이 합성가스를 WGS 반응과 PSA 공법을 이용하면 고순도 수소로의 전환 및 회수가 가능하다. (주)애드플라텍에서는 자체 보유하고 있는 3톤/일급 플라즈마 폐기물 처리설비와 수소 정제/회수시스템을 연계하여, 폐기물로부터 고순도 수소 생산 ($20Nm^3/h$ 이상)을 위한 플라즈마 폐기물 처리 수소 생산 통합시스템 개발을 진행하고 있다. 합성가스 내 질소 농도를 낮추기 위해 산소를 매질로 하는 100kW급 산소 플라즈마 토치를 제작 하였다. 수소 정제/회수 시스템은 폐기물의 플라즈마 처리 후의 합성가스 생성량과 조성의 변화에 대응할 수 있도록 하였으며 WGS 반응기로 들어가는 합성가스를 가스 컴프레서를 통하여 최대 10기압으로 승압시키고, 고농도 일산화탄소의 효과적인 제거 및 열 회수 극대화가 이루어질 수 있는 최적의 가스처리 시스템으로 구현되도록 하였다. 설치 완료된 WGS 반응기의 성능시험이 플라즈마 처리설비와 연계하여 수행되었으며 WGS 반응기를 거친 일산화탄소의 농도는 1.5% 미만으로 분석되었다. 차기 년도에 설치/가동 예정인 수소 생산용 PSA는 최대 10기압 운전 및 상압재생 방식으로 운전되며 생산된 수소는 최소 99.99%이상의 고순도를 유지할 것으로 기대된다.

  • PDF

A Study on Safety of Hydrogen Station (수소충전소의 안전성에 관한 연구)

  • Ko, Jae-Wook;Lee, Dae-Hee;Jung, In-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • A safety assessment was performed through the process analysis of hydrogen station. The purpose of this study provides basic information for the standard establishment about hydrogen stations. The processes of hydrogen stations were classified by four steps (process of manufacture, compression, storage, charge). FMEA (Failure Mode and Effect Analysis) method was applied to evaluate safety. Each risk element is following; S (severity), O (occurrence), D (detection). And the priority of order was decided by using RPN (Risk Priority Number) value multiplying three factors. Scenarios were generated based on FMEA results. And consequence analysis was practiced using PHAST program. In the result of C.A, jet fire and explosion were shown as accident types. In case of leakage of feed line in PSA process, concentration of CO gas is considered to prevent CO gas poisoning when the raw material that can product CO gas was used.

  • PDF

Measurement of mass Transfer Coefficients for Adsorptive Bulk Gas Separation with Velocity Variations (기체속도가 변하는 벌크기체의 흡착공정에서 물질전달계수의 측정)

  • Min, Jun-Ho;Choi, Min-Ho;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.310-318
    • /
    • 1999
  • The concentration breakthrough curves were examined to predict mass transfer coefficients of nitrogen and oxygen in adsorption column for design data of PSA process. Experimental breakthrough curves for bulk gas flow were compared with theoretical simulation results. For quantitative analysis of the adsorption, coupled Langmuir isotherm was considered and LDF model was used to describe the mass transfer effect. In the experimental and theoretical results, it was found that mass transfer coefficient was not affected by flow rate but strongly affected by pressure. As a result of this tendency, mass transfer resistance in this system was proved to belong to the macropore diffusion controlling region and the mass transfer coefficients could be expressed by exponential functions of pressure change. The mass transfer coefficients for one component, nitrogen or oxygen, were successfully applied to breakthrough curves for bulk mixed gases. The experimental curves were reasonably in consistent with the theoretical curves and the error time was less than 5 percent.

  • PDF

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process (마이크로웨이브 폴리올 공정에서 금속 도핑 산화아연 나노클러스터의 합성)

  • Kwon, Oh-San;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.525-533
    • /
    • 2014
  • ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.

Performance Evaluation for the A/O Pure-Oxygen Biofilm (POB) Process on the Removal of Organics and TKN in the Industrial Wastewater (혐기/호기 순산소 생물막공법에 의한 산업폐수의 유기물 및 TKN 제거 성능평가)

  • Jang, Am;Kim, Hong Suck;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.837-847
    • /
    • 2000
  • For the treatment of wastewaters generated from beer industry and petrochemical company with high organic and nitrogen contents, laboratory scale of A/O Pure-Oxygen Biofilm (POB) process was developed and studied by means of the comparative economic analysis with extended aeration process. When the wastewater of beer company was initially treated by the A/O POB process in the ranges of 70 to 150 mg TOC/L diluted with tap water, higher than 92% of TOC removal was accomplished in the all ranges. In case of petrochemical wastewater, the initial TOC removal was as low as 52%, though, it increased to 86% after 32 days of operation and also the TKN removal marked 71% after 27 days. Continuous high removal rates were monitored in both the TOC and TKN parameters during the experimental period. Due to the cost for PSA (Pressure Swing Adsorption) setting and biomass supporting media installation, the initial construction cost of A/O POB process was 2.9 times higher than that of extended aeration process. However, the advantages such as low sludge production, no need for sludge recycling and low energy consumption allow the A/O POB process to have 2.5 times lower operation and maintenance costs. Consequently, in the long term of operation, it is likely that A/O POB process would show higher performance as well as cost effectiveness compared to extended aeration process.

  • PDF

Usable Capacity for CO2 capture and storage in MOFs (금속 유기 골격체를 활용한 사용 가능한(Usable capacity) 이산화탄소 포집 연구)

  • Park, Seoha;Oh, Hyunchul;Jang, Haenam
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.80-85
    • /
    • 2018
  • Usable capacity is one of the most important parameters for evaluating the performance of an adsorbent for $CO_2$ capture from flue gas streams. In the pressure swing adsorption (PSA) process, the usable capacity is calculated as the difference between the quantity adsorbed in flue gas at high pressure (ca. 20 bar) and the quantity adsorbed at lower purge pressure (ca. 2 bar). In this paper, two stereo-types of metal-organic framework (MOF) were evaluated as an promising adsorbent for $CO_2$ capture: flexible structured MOF (MIL-53) and MOF possessing strong binding sites (MOF-74). The results showed that a total $CO_2$ capture capacity is strongly related to the specific surface area and heat of adsorption, revealing high uptake in MOF-74. However, the usable capacity was more pronounced in MIL-53 due to a structural transition.

Variation of Adhesion Characteristics of Acryl Copolymer/Multi-functional Monomer Based PSA by UV Curing (자외선 경화에 의한 아크릴 공중합체/다관능성 단량체 복합 감압점착제의 접착특성 변화)

  • Ryu, Chong-Min;Pang, Bei-Li;Kim, Hyung-Il;Park, Ji-Won;Lee, Seung-Woo;Kim, Hyun-Jung;Kim, Kyung-Man
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.315-320
    • /
    • 2012
  • Ultra violet (UV) curable pressure sensitive adhesives (PSA) were prepared by controlling both the structure of acryl copolymer and the functionality and content of multi-functional monomers. Acryl copolymer worked as the base polymer for giving the tackiness. Multi-functional monomers were used to vary the crosslinked structure and the degree of crosslink. Acryl copolymer showed the reduced peel strength after UV curing by decreasing the content of 2-ethylhexyl acrylate in the monomer composition. Both the peel strength of PSA and the content of residue found on silicon wafer decreased after UV curing by increasing the functionality of multi-functional monomers. UV curable PSA containing 20 phr six-functional monomer showed the higher peel strength before UV curing and the lower peel strength and the least residue on silicon wafer after UV curing.