Browse > Article
http://dx.doi.org/10.12925/jkocs.2014.31.3.525

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process  

Kwon, Oh-San (Department of Engineering Chemistry, Chungbuk National University)
Kang, Kuk-Hyoun (Department of Engineering Chemistry, Chungbuk National University)
Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.31, no.3, 2014 , pp. 525-533 More about this Journal
Abstract
ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.
Keywords
Zinc Oxide; Microwave; Metal Dopping; Nanoclusters; Polyol Process;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. H. Kim, S. G. Lee, E. J. Jung, D. W. Lee, H. B. Pyo, K. H. Kang, D. K. Lee, "Preparation and Characteristics of Multilayer Lamellar Vesicle Using phosphate Ester Surfactant", J. of Korean Oil Chemists' Soc., 30, 280-289 (2013).   DOI
2 K. H. Kang, D. K. Lee, "Synthesis and Characteristics of Magnesium Hydroxide using Microwave", Korean J. Met. Mater., 51, 077-082 (2013).
3 S. B. Choi, D. K. Lee, H. U. Yu, "Synthesis of MgO Granule and Its Precursors via Common Ion Effect" J. Nanosci. Nanotechnol. 12, 5778-5782 (2012).   DOI
4 K. H. Kang, D. K. Lee, H. Rus, S. H. Ahn, H. U. Yu, "Shape Control of Magnesium Oxysulfate Granules Using an Ethanolamine Chelate", J. Nanosci. Nanotechno., 14, 8777-8782 (2014).   DOI
5 H. M. Xiong, D. G. Shchukin, H. Mhwald, Y. Xu, Y.Y. Xia, "Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II)", Angew. Chem. Int. Ed. 48, 2727-2731 (2009).   DOI
6 H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, "Monodisperse Magnetic Single-Crystal Ferrite Microspheres", Angew. Chem. Int. Ed., 44, 2782-2785 (2005).   DOI   ScienceOn
7 C. Feldmann, H. O. Jungk, "Polyol-Mediated Preparation of Nanoscale Oxide Particles We thank Jacqueline Merikhi and Gerd Much for carrying out the scanning electron microscopy (SEM) and the atomic force microscopy (AFM) investigations, respectively", Angew. Chem. Int. Ed., 40, 359-362 (2001).   DOI   ScienceOn
8 C. Li, Y. Zhao, L. Wang, G. Li, Z. Shi, S. Feng, "Polyol-Mediated Synthesis of Highly Water-Soluble ZnO Colloidal Nanocrystal Clusters", Eur. J. Inorg. Chem., 2010, 217-220 (2010).   DOI
9 I. Bilecka, I. Djerdj, M. Niederberger, "One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles", Chem. Commum., 2008, 886-888 (2008).
10 J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, "Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis", J. Am. Chem. Soc., 127, 15791-15800 (2005).   DOI   ScienceOn
11 Y. J. Zhu, W. W. Wang, R. J. Qi, X. L. Hu, "Synthesis of PbCrO4 and Pb2CrO5 Rods via a Microwave-Assisted Ionic Liquid Method", Angew. Chem. Int. Ed., 43, 1410-1414 (2004).   DOI   ScienceOn
12 S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, A. Gedanken, "Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide", Adv. Funct. Mater., 15, 1708-1715 (2005).   DOI   ScienceOn
13 M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, "Microwave-Assisted Synthesis of Metallic Nanostructures in Solution", Chem. Eur. J., 11, 440-452 (2005).   DOI   ScienceOn
14 A. K. Phuruangrat, T. P. Thongtem, S. C. Thongtem, "Controlling morphologies and growth mechanism of hexagonal prisms with planar and pyramid tips of ZnO microflowers by microwave radiation" Ceramics Internal., 40, 9069-9076 (2014).   DOI
15 K. A. salman, K. Omar, Z. Hassan, "Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers" solar energy, 86, 541-547 (2012).   DOI
16 C. Feldmann, "Preparation of Nanoscale Pigment Particles", Adv. Mater., 13, 1301-1303 (2001).   DOI
17 C. Feldmann, "Polyol-Mediated Synthesis of Nanoscale Functional Materials", Adv. Funct. Mater., 13, 101-107 (2003).   DOI   ScienceOn
18 M. A. Herrero, J. M. Kremsner, C. O. Kappe, Nonthermal Microwave Effects Revisited: On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry", J. Organic Chem., 73, 36-47 (2008).   DOI
19 J. Zhao, X. Q. Yan, Y. Lei, Y. U. Zhao, Y. H. Huang, Y. Zhang, "Size control of Co-doped ZnO rods by changing the solvent, Adv. in Mater. Resear., 1, 75-81 (2012).   DOI
20 S. M. Salaken, E. Farzana, J. Podder, "Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis", J. Semiconductor., 34, 073003-1-073003-6 (2013).   DOI
21 N. R. Yogamalar, R. Srinivasan, A. C. Bose, "Multi-capping agents in size confinement of ZnO nanostructured particles", Optical Materials, 31, 1570-1574 (2009).   DOI
22 A. Moulahi, F. Sediri, "ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties", Ceramics International, 40, 943-950 (2014).   DOI
23 A.Sharma, B. P. Singh, "Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol-gel route", S. Dhar, Surface Sci., 606, L13-L17 (2012).   DOI
24 P. Jiang, J. J. Zhou, H. F. Fang, C.Y. Wang, Z. L. Wang, S.S. Xie, "Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays", Adv. Func. Mater., 17, 1303-1310 (2007).   DOI