• Title/Summary/Keyword: PRO II Simulation

Search Result 46, Processing Time 0.023 seconds

A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process (DME 생산공정에서 노말 메틸 피로리돈(N-Methyl-2-Pyrrolidone) 용매를 이용한 이산화탄소 제거공정 연구)

  • Jung, Jongtae;Roh, Jaehyun;Cho, Jungho
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, simulation works have been performed for the $CO_2$ removal process contained in the DME production process using NMP (N-methyl-2-pyrrolidone) as a solvent. PRO/II with PROVISION release 9.1 at Invensys was used as a chemical process simulator and NRTL activity coefficient model with Henry's law option and Soave-Redlich-Kwong equation of state were used for thermodynamic models. For the determination of the binary interaction parameters in NRTL model, regression works have been performed to match the experimental thermodynamic data. Optimal feed tray location which minimizes the reboiler heat duty was determined.

Extractive Distillation Process for the Production of Highly Purified Ethanol from Aqueous Solution using Dimethyl Sulfoxide and Ethylene Glycol (Dimethyl Sulfoxide와 Ethylene Glycol을 이용하여 에탄올 수용액으로부터 고순도 에탄올을 생산하기 위한 추출증류공정)

  • Noh, Sang-Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • In this study, comparative work has been performed between two-columns and three-columns configurations for an extractive distillation process to produce highly purified ethanol with not less than 99.7 wt% using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as extracting agents. Optimal ethanol concentration at a concentrator top stream which minimized the total reboiler heat duties was determined for a three-columns configuration for two different solvents. For the thermodynamic model, NRTL liquid activity coefficient model was used and PRO/II with PROVISION 9.4 at Schneider electric company was utilized. DMSO was proved to be a better solvent than EG and three-columns configuration is better than two- columns configuration in the total utility consumptions since some of the liquid water contained in the feed stream was removed at a concentrator bottom liquid stream.

Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass (목질계 Biomass로부터 강산 당화 공정에 의한 Bioethanol 생산 공정의 물질 및 열수지)

  • Kim, Hee-Young;Lee, Eui-Soo;Kim, Won-Seok;Suh, Dong-Jin;Ahn, Byoung-Sung
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.156-165
    • /
    • 2011
  • The process for bioethanol production from lignocellulosic biomass was studied through process simulation using PRO/II. Process integration was conducted with concentrated acid pretreatment, hydrolysis process, SMB (simulated moving bed chromatography) process and pervaporation process. Energy consumption could be minimized by the heat recovery process. In addition, material and energy balance were calculated based on the results from the simulation and literature data. A net production yield of 4.07 kg-biomass and energy consumption value of 3,572 kcal per 1 kg ethanol were calculated, which is indicating that 26% yield increase and 30% energy saving compared to the bioethanol production process with dilute-acid hydrolysis (SRI report). In order to make it possible, sugar conversion yield of cellulose and hemi-cellulose is to be reached up to 90% and fermentation of xylose needs to be developed. In order to reduce the energy consumption up to 30%, the concentration of acid solution after being separated by 5MB should exceed 20%. If acid/sugar separation by SMB process is to be practical, the bioethanol process designed in this study can be commercially feasible.

Simulation Study of Hydrogen Liquefaction Process Using Helium Refrigeration Cycle (헬륨 냉동사이클을 이용한 수소액화 공정모사 연구)

  • Park, Hoey Kyung;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Compared to gaeous hydrogen, liquid hydrogen has approximately 1/800 volume, 800 times higher volumetric energy density at the same pressure, and the advantage of lower explosion risk and easier transportation than gaseous hydrogen. However, hydrogen liquefaction requires larger scale facility investment than simple compression storage method. Therefore, the research on energy-saving hydrogen liquefaction processes is highly necessary. In this study, helium/neon (mole ratio 80 : 20) refrigeration cycle was investigated as the main refrigeration process for hydrogen liquefaction. Process simulation for less energy consumption were carried out using PRO/II with PROVISION V10.2 of AVEVA. For hydrogen liquefaction, energy consumption was compared in three cases: Using a helium/neon refrigerant cycle, a SMR+helium/neon refrigerant cycle, and a C3-MR+helium/neon refrigerant cycle. As a result, the total power consumptions of compressors required to liquefy 1 kg of hydrogen are 16.3, 7.03 and 6.64 kWh, respectively. Therefore, it can be deduced that energy usage is greatly reduced in the hydrogen liquefaction process when the pre-cooling is performed using the SMR process or the C3MR process, which have already been commercialized, rather than using only the helium/neon refrigeration cycle for the hydrogen liquefaction process.

A Study on Development of High Strength Al-Zn Based Alloy for Die Casting II: Evaluation of Fluidity and Gravity Casting (고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 II: 중력주조, 유동성평가)

  • Shin, Sang-Soo;Lim, Young-Hoon;Kim, Eok-Soo;Lim, Kyung-Mook
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.531-538
    • /
    • 2012
  • In this study, we evaluated the fluidity of the Al-Zn based alloys which exhibit excellent mechanical properties. We conducted computer simulations of fluid flow using the results of DSC, DTA analysis and Java-based Materials Properties software (J. Mat. Pro). Such computer simulations were then compared with the results obtained from experimental observations. The computer simulation results and the experimental results were very similar in fluidity length. It was found that the fluidity length of Al-Zn alloys is improved by increasing the Zn content while decreasing the solidus temperature of an alloy. In addition, we elucidate the effect of Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al-xZn3Cu0.4Si0.3Fe) x=20, 30, 40, and 45 wt% alloys fabricated by gravity casting.

A Study on the Power Generation Using Supercritical Carbon Dioxide (초임계 이산화탄소를 활용한 발전에 대한 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.297-302
    • /
    • 2019
  • In this paper, the power generation efficiency increase has been studied for a Rankine cycle using both supercritical carbon dioxide as a working fluid and LNG as a coolant with PRO/II with PROVISION release 10.0 from Aveva company. Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle using LNG cold heat. Power generation efficiency was increased from 24.82% to 57.76% when using LNG as a coolant for supercritical carbon dioxide power generation cycle.

Comparative Study between Single-stage and Two-stage Expansion Using LNG Cold Heat (액화천연가스 냉열을 이용한 단일팽창과 이단팽창 사이의 비교 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.188-192
    • /
    • 2019
  • Comparative studies between single- and two-stage expansion process using LNG cold heat have been performed for a closed Rankine power generation cycle. PRO/II with PROVISION release 10.0 from Schneider Electric Company was used, and the Peng-Robinson equation of state model with Twu's alpha function was selected for the modeling and optimization of the power generation cycle using LNG cold heat. In two-stage power generation cycle, 6.7% more power was obtained compared to that of single-stage power generation cycle through the optimization works.

A Study on the Price Evaluation Per 1 Ton of Liquefied Natural Gas According to the Refrigerants Supply Temperature in the Electric Refrigerator (전기식 냉동기에서 냉매의 공급온도에 따른 액화천연가스의 톤당 냉열 가격 산출에 대한 연구)

  • KIM, YONUNGWOO;PARK, ILSOO;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.473-477
    • /
    • 2019
  • In this paper, cold heat price contained in the 1 ton/h of LNG has been evaluated using PRO/II with PROVISION release 10.2 from Aveva company when LNG is used to liquefy several refrigerants instead of using vapor recompression refrigeration cycle. Normal butane, R134a, NH3, R22, propane and propylene refrigerants were selected for the modeling of refrigeration cycle. It was concluded that LNG cold heat price was inversely proportional to the refrigerant supply temperature, even though LNG supply flow rate is not varied according to the refrigerant supply temperature.

A Study on the Nitrogen Liquefaction Using Linde, Claude and Advanced Cycle (Linde, Claude 및 Advanced 사이클을 이용한 질소액화공정 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.261-265
    • /
    • 2022
  • In this paper, comparative studies between Linde, Claude and advanced cycle for the liquefaction of nitrogen have been completed. PRO/II with PROVISION release 2021. 1 from AVEVA company (Cambridge, UK) was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the condensation of nitrogen. When using Claude liquefaction, we can reduce the total compression power by 49.25% for the comparison of Linde cycle. And finally, we could conclude that 90.41% of total compression power was saved when using an advanced cycle being compared to Linde liquefaction cycle.

Study on the Oxygen Liquefaction Using Linde-Hampson and Claude Cycle (Linde-Hampson 및 Claude 사이클을 이용한 산소액화공정 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.446-450
    • /
    • 2022
  • In this paper, comparative studies between Linde-Hampson and Claude cycle for the liquefaction of oxygen have been completed. PRO/II with PROVISION release 2021. 1 from AVEVA company (Cambridge, UK) was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the condensation of oxygen. When using Claude liquefaction cycle, we could reduce the total compression power by 59.51% for the comparison of Linde-Hampson cycle.