Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.3.261

A Study on the Nitrogen Liquefaction Using Linde, Claude and Advanced Cycle  

NOH, SANGGYUN (Department of Computer Software, Dongyang University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.3, 2022 , pp. 261-265 More about this Journal
Abstract
In this paper, comparative studies between Linde, Claude and advanced cycle for the liquefaction of nitrogen have been completed. PRO/II with PROVISION release 2021. 1 from AVEVA company (Cambridge, UK) was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the condensation of nitrogen. When using Claude liquefaction, we can reduce the total compression power by 49.25% for the comparison of Linde cycle. And finally, we could conclude that 90.41% of total compression power was saved when using an advanced cycle being compared to Linde liquefaction cycle.
Keywords
Linde cycle; Claude cycle; Nitrogen Liquefaction; Computer simulation; Advanced cycle;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. M. Smith, H. C. Van Ness, M. M. Abbott, and M. T. Swihart, "Introduction to chemical engineering thermodynamics", 8th ed, McGraw-Hill Higher Education, USA, 2018, pp. 1-4.
2 S. I. Sandler, "Chemical, biochemical, and engineering thermodynamics", 4th ed, John Wiley & Sons, Inc., USA, 2006, pp. 4-5.
3 J. H. Cho, J. G. Park, S. T. Kim, "Simulation of chemical process using Pro/II with PROVISION", A-JIN, Korea, 2004, pp. 49-61.
4 J. R. Roebuck and H. Osterberg, "The Joule-Thomson effect in nitrogen", Phys. Rev., Vol. 48, No. 5, 1935, pp. 450-457, doi: https://doi.org/10.1103/PhysRev.48.450.   DOI
5 G. M. Kontogeorgis and G. K. Folas, "Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories", John Wiley & Sons, Inc., USA, 2009, pp. 41-42, doi: https://doi.org/10.1002/9780470747537.   DOI
6 D. Han and Y. Baek, "Process analysis and simulation for system of air liquefaction separation using LNG cold energy", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 276-281, doi: https://doi.org/10.7316/KHNES.2019.30.3.276.   DOI
7 M. T. Jelodar, H. Rastegar, and H. A. Abyaneh, "Modeling turbo-expander systems", Simulation, Vol. 89, No. 2, 2013, pp. 234-248, doi: https://doi.org/10.1177/0037549712469661.   DOI
8 J. H. Cho, "Energy saving through process improvement, CO2 capture and unutilized energy utilization technology", A-JIN, Korea, 2018, pp. 165-178.
9 G. W. Dilay and R. A. Heldemann, "Calculation of Joule-Thomson inversion curves from equations of state", Ind. Eng. Chem. Fundamen., Vol. 25, No. 1, 1986, pp. 152-158, doi: https://doi.org/10.1021/i100021a024.   DOI
10 F. C. Chou, S. M. Wu, and C. F. Pai, "Prediction of final temperature following Joule-Thomson expansion of nitrogen gas", Cryogenics, Vol. 33, No. 9, 1993, pp. 857-862, doi: https://doi.org/10.1016/00112275(93)90099A.   DOI
11 Y. D. Peng and D. B. Robinson, "A new two-constant equation of state", Ind. Eng. Chem. Fundamen., Vol. 15, No. 1, 1976, pp. 59-64, doi: https://doi.org/10.1021/i160057a011.   DOI
12 C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, "A cubic equation of state with a new alpha function and a new mixing rule", Fluid Phase Equilib., Vol. 69, 1991, pp. 33-50, doi: https://doi.org/10.1016/03783812(91)900242.   DOI
13 R. F. Barron, "Advances in cryogenic principles", Springer, USA, 2007, pp. 105119, doi: https://doi.org/10.1007/0-387-46896-X_5.   DOI
14 R. F. Barron, "Cryogenic system", 2nd ed, Oxford University Press, USA, 1985.
15 J. H. Cho, "A study on the power saving with the use of LNG cold heat in a cascade refrigeration cycle using methane, ethylene and propylene as refrigerants", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 3, 2020, pp. 302-306, doi: https://doi.org/10.7316/KHNES.2020.31.3.302.   DOI