DOI QR코드

DOI QR Code

Linde, Claude 및 Advanced 사이클을 이용한 질소액화공정 연구

A Study on the Nitrogen Liquefaction Using Linde, Claude and Advanced Cycle

  • 노상균 (동양대학교 컴퓨터소프트웨어학과)
  • NOH, SANGGYUN (Department of Computer Software, Dongyang University)
  • 투고 : 2022.05.14
  • 심사 : 2022.06.10
  • 발행 : 2022.06.30

초록

In this paper, comparative studies between Linde, Claude and advanced cycle for the liquefaction of nitrogen have been completed. PRO/II with PROVISION release 2021. 1 from AVEVA company (Cambridge, UK) was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the condensation of nitrogen. When using Claude liquefaction, we can reduce the total compression power by 49.25% for the comparison of Linde cycle. And finally, we could conclude that 90.41% of total compression power was saved when using an advanced cycle being compared to Linde liquefaction cycle.

키워드

과제정보

이 논문은 2020년도 동양대학교 학술연구비의 지원으로 수행되었다.

참고문헌

  1. J. M. Smith, H. C. Van Ness, M. M. Abbott, and M. T. Swihart, "Introduction to chemical engineering thermodynamics", 8th ed, McGraw-Hill Higher Education, USA, 2018, pp. 1-4.
  2. S. I. Sandler, "Chemical, biochemical, and engineering thermodynamics", 4th ed, John Wiley & Sons, Inc., USA, 2006, pp. 4-5.
  3. J. H. Cho, "Energy saving through process improvement, CO2 capture and unutilized energy utilization technology", A-JIN, Korea, 2018, pp. 165-178.
  4. J. H. Cho, J. G. Park, S. T. Kim, "Simulation of chemical process using Pro/II with PROVISION", A-JIN, Korea, 2004, pp. 49-61.
  5. G. W. Dilay and R. A. Heldemann, "Calculation of Joule-Thomson inversion curves from equations of state", Ind. Eng. Chem. Fundamen., Vol. 25, No. 1, 1986, pp. 152-158, doi: https://doi.org/10.1021/i100021a024.
  6. F. C. Chou, S. M. Wu, and C. F. Pai, "Prediction of final temperature following Joule-Thomson expansion of nitrogen gas", Cryogenics, Vol. 33, No. 9, 1993, pp. 857-862, doi: https://doi.org/10.1016/00112275(93)90099A.
  7. J. R. Roebuck and H. Osterberg, "The Joule-Thomson effect in nitrogen", Phys. Rev., Vol. 48, No. 5, 1935, pp. 450-457, doi: https://doi.org/10.1103/PhysRev.48.450.
  8. M. T. Jelodar, H. Rastegar, and H. A. Abyaneh, "Modeling turbo-expander systems", Simulation, Vol. 89, No. 2, 2013, pp. 234-248, doi: https://doi.org/10.1177/0037549712469661.
  9. Y. D. Peng and D. B. Robinson, "A new two-constant equation of state", Ind. Eng. Chem. Fundamen., Vol. 15, No. 1, 1976, pp. 59-64, doi: https://doi.org/10.1021/i160057a011.
  10. G. M. Kontogeorgis and G. K. Folas, "Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories", John Wiley & Sons, Inc., USA, 2009, pp. 41-42, doi: https://doi.org/10.1002/9780470747537.
  11. C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, "A cubic equation of state with a new alpha function and a new mixing rule", Fluid Phase Equilib., Vol. 69, 1991, pp. 33-50, doi: https://doi.org/10.1016/03783812(91)900242.
  12. J. H. Cho, "A study on the power saving with the use of LNG cold heat in a cascade refrigeration cycle using methane, ethylene and propylene as refrigerants", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 3, 2020, pp. 302-306, doi: https://doi.org/10.7316/KHNES.2020.31.3.302.
  13. D. Han and Y. Baek, "Process analysis and simulation for system of air liquefaction separation using LNG cold energy", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 276-281, doi: https://doi.org/10.7316/KHNES.2019.30.3.276.
  14. R. F. Barron, "Advances in cryogenic principles", Springer, USA, 2007, pp. 105119, doi: https://doi.org/10.1007/0-387-46896-X_5.
  15. R. F. Barron, "Cryogenic system", 2nd ed, Oxford University Press, USA, 1985.