• Title/Summary/Keyword: PR-proteins

Search Result 86, Processing Time 0.032 seconds

Removal of the Glycosylation of Prion Protein Provokes Apoptosis in SF126

  • Chen, Lan;Yang, Yang;Han, Jun;Zhang, Bao-Yun;Zhao, Lin;Nie, Kai;Wang, Xiao-Fan;Li, Feng;Gao, Chen;Dong, Xiao-Ping;Xu, Cai-Min
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.662-669
    • /
    • 2007
  • Although the function of cellular prion protein (PrP$^C$) and the pathogenesis of prion diseases have been widely described, the mechanisms are not fully clarified. In this study, increases of the portion of non-glycosylated prion protein deposited in the hamster brains infected with scrapie strain 263K were described. To elucidate the pathological role of glycosylation profile of PrP, wild type human PrP (HuPrP) and two genetic engineering generated non-glycosylated PrP mutants (N181Q/N197Q and T183A/T199A) were transiently expressed in human astrocytoma cell line SF126. The results revealed that expressions of non-glycosylated PrP induced significantly more apoptosis cells than that of wild type PrP. It illustrated that Bcl-2 proteins might be involved in the apoptosis pathway of non-glycosylated PrPs. Our data highlights that removal of glycosylation of prion protein provokes cells apoptosis.

Skin Wrinkle Improvement Effect of Paeoniae radix and processed Paeoniae radix Through inhibition of Advanced glycation end products (AGEs) (작약 및 포제작약의 최종당화산물 억제를 통한 피부 주름 개선 효과)

  • Kim, SuJi;Lee, AhReum;Kim, SooHyun;Kim, KyeongJo;Kwon, OJun;Choi, JoonYoung;Koo, JinSuk;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.53-60
    • /
    • 2017
  • Objectives : Collagen decrease of Skin appears through various path ways. One of causes may be the Advanced glycation endproducts (AGEs) that combine formation of glucose and protein. The aim of this study was to explore the prevent wrinkle formation of Paeoniae radix (PR) and heated Paeoniae radix (HPR) via AGEs path way. Methods : AGEs formation inhibitory activities of PR and HPR measured using bovine serum albumin, glucose, and fructose. To evaluate the protective effects of PR and HPR in diabetic rats induced with streptozotocin (STZ) and methyl glyoxal (MGO), SD rat were distributed into four groups. Normal rats (Nor), AGEs-induced rats (Con), AGEs-induced rats treated with 100 mg/kg PR(PR), AGEs-induced rats treated with 100 mg/kg HPR (HPR). To induce AGEs, streptozotocin (50 mg/kg) was administered intraperitoneally and after 3 days administrated 100mM methyl glyoxal for 3 weeks. Results : The oral administration of HPR inhibited AGEs in skin tissues compared with PR. The increased reactive oxygen species (ROS) levels in the serum were diminished by HPR treatment. The analyses of kidney and skin tissues proteins indicated that HPR treatment effectively reduced AGEs related protein levels as compared to that by PR treatment. Also, HPR decreased anti-oxidant related protein levels in skin tissues such as catalase, glutathione peroxidase. Moreover, it inhibited the reduction of COL1A2 by decreasing MMP-1. Conclusion : Based on these results, it was suggested that PR and HPR could have Improving effects on wrinkle formation. These evidences provide useful information for the development wrinkle formation treated agent.

Crystal Structure of Osmotin, a Plant Antifungal Protein

  • Kyeongsik Min;Ha, Sung-Chul;Yun, Dae-Jin;Kim, Kyeong-Kyu
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.29-29
    • /
    • 2002
  • In response to fungal invasion and other signals, plants accumulate a number of proteins that are involved in defense against pathogens. Osmotin is a 24 kDa protein belonging to the pathogenesis-related (PR) protein, a component of the hypersensitive response in leaves of tobacco plants exposed to tobacco mosaic virus.(omitted)

  • PDF

Transgenic Tobacco Expressing the hrpNEP Gene from Erwinia pyrifoliae Triggers Defense Responses Against Botrytis cinerea

  • Sohn, Soo-In;Kim, Yul-Ho;Kim, Byung-Ryun;Lee, Sang-Yeob;Lim, Chun Keun;Hur, Jang Hyun;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.232-239
    • /
    • 2007
  • $HrpN_{EP}$, from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the $hrpN_{EP}$ gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in $hrpN_{EP}$-expressing tobacco differed from that in plants expressing $hpaG_{Xoo}$ from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.

C9orf72-Associated Arginine-Rich Dipeptide Repeat Proteins Reduce the Number of Golgi Outposts and Dendritic Branches in Drosophila Neurons

  • Park, Jeong Hyang;Chung, Chang Geon;Seo, Jinsoo;Lee, Byung-Hoon;Lee, Young-Sam;Kweon, Jung Hyun;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.821-830
    • /
    • 2020
  • Altered dendritic morphology is frequently observed in various neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the cellular and molecular basis underlying these pathogenic dendritic abnormalities remains largely unclear. In this study, we investigated dendritic morphological defects caused by dipeptide repeat protein (DPR) toxicity associated with G4C2 expansion mutation of C9orf72 (the leading genetic cause of ALS and FTD) in Drosophila neurons and characterized the underlying pathogenic mechanisms. Among the five DPRs produced by repeat-associated non-ATG translation of G4C2 repeats, we found that arginine-rich DPRs (PR and GR) led to the most significant reduction in dendritic branches and plasma membrane (PM) supply in Class IV dendritic arborization (C4 da) neurons. Furthermore, expression of PR and GR reduced the number of Golgi outposts (GOPs) in dendrites. In Drosophila brains, expression of PR, but not GR, led to a significant reduction in the mRNA level of CrebA, a transcription factor regulating the formation of GOPs. Overexpressing CrebA in PR-expressing C4 da neurons mitigated PM supply defects and restored the number of GOPs, but the number of dendritic branches remained unchanged, suggesting that other molecules besides CrebA may be involved in dendritic branching. Taken together, our results provide valuable insight into the understanding of dendritic pathology associated with C9-ALS/FTD.

Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene

  • Wang, Hongtao;Xu, Fengjiao;Wang, Xinqi;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.482-487
    • /
    • 2019
  • Background: The mixed-cultivation of different Panax ginseng cultivars can cause adverse effects on stability of yield and quality. K-1 is a superior cultivar with good root shape and stronger disease resistance. DNA markers mined from functional genes are clearly desirable for K-1, as they may associate with major traits and can be used for marker-assisted selection to maintain the high quality of Korean ginseng. Methods: Five genes encoding pathogenesis-related (PR) proteins of P. ginseng were amplified and compared for polymorphism mining. Primary, secondary, and tertiary structures of PR5 protein were analyzed by ExPASy-ProtParam, PSSpred, and I-TASSER methods, respectively. A coding single nucleotide polymorphism (SNP)-based specific primer was designed for K-1 by introducing a destabilizing mismatch within the 3' end. Allele-specific polymerase chain reaction (PCR) and real-time allele-specific PCR assays were conducted for molecular discrimination of K-1 from other cultivars and landraces. Results: A coding SNP leading to the modification of amino acid residue from aspartic acid to asparagine was exploited in PR5 gene of K-1 cultivar. Bioinformatics analysis showed that the modification of amino acid residue changed the secondary and tertiary structures of the PR5 protein. Primer KSR was designed for specific discrimination of K-1 from other ginseng cultivars and landraces. The developed real-time allele-specific PCR assay enabled easier automation and accurate genotyping of K-1 from a large number of ginseng samples. Conclusion: The SNP marker and the developed real-time allele-specific PCR assay will be useful not only for marker-assisted selection of K-1 cultivar but also for quality control in breeding and seed programs of P. ginseng.

AtCBP63, a Arabidopsis Calmodulin-binding Protein 63, Enhances Disease Resistance Against Soft Rot Disease in Potato (애기장대 칼모듈린 결합 단백질 AtCBP63을 발현시킨 형질전환 감자의 무름병 저항성 증가)

  • Chun, Hyun-Jin;Park, Hyeong-Cheol;Goo, Young-Min;Kim, Tae-Won;Cho, Kwang-Soo;Cho, Hyeon-Seol;Yun, Dae-Jin;Chung, Woo-Sik;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Calmodulin (CaM), a $Ca^{2+}$ binding protein in eukaryotes, mediates cellular $Ca^{2+}$ signals in response to a variety of biotic and abiotic external stimuli. The $Ca^{2+}$-bound CaM transduces signals by modulating the activities of numerous CaM-binding proteins. As a CaM binding protein, AtCBP63 ($\b{A}$rabidopsis thaliana $\b{C}$aM-binding protein $\underline{63}$ kD) has been known to be positively involved in plant defense signaling pathway. To investigate the pathogen resistance function of AtCBP63 in potato, we constructed transgenic potato (Solanum tuberosum L.) plants constitutively overexpressing AtCBP63 under the control of cauliflower mosaic virus (CaMV) 35S promoter. The overexpression of the AtCBP63 in potato plants resulted in the high level induction of pathogenesis-related (PR) genes such as PR-2, PR-3 and PR-5. In addition, the AtCBP63 transgenic potato showed significantly enhanced resistance against a pathogen causing bacterial soft rot, Erwinia carotovora ssp. Carotovora (ECC). These results suggest that a CaM binding protein from Arabidopsis, AtCBP63, plays a positive role in pathogen resistance in potato.

Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper

  • Lim, Jong-Hui;Kim, Sang-Dal
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2013
  • Drought stress is one of the major yield affecting factor for pepper plant. The effects of PGPRs were analyzed in relation with drought resistance. The PGPRs inoculated pepper plants tolerate the drought stress and survived as compared to non-inoculated pepper plants that died after 15 days of drought stress. Variations in protein and RNA accumulation patterns of inoculated and non-inoculated pepper plants subjected to drought conditions for 10 days were confirmed by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and differential display PCR (DD-PCR), respectively. A total of six differentially expressed stress proteins were identified in the treated pepper plants by 2D-PAGE. Among the stress proteins, specific genes of Cadhn, VA, sHSP and CaPR-10 showed more than a 1.5-fold expressed in amount in B. licheniformis K11-treated drought pepper compared to untreated drought pepper. The changes in proteins and gene expression patterns were attributed to the B. licheniformis K11. Accordingly, auxin and ACC deaminase producing PGPR B. licheniformis K11 could reduce drought stress in drought affected regions without the need for overusing agrochemicals and chemical fertilizer. These results will contribute to the development of a microbial agent for organic farming by PGPR.

Effect of Acibenzolar-S-methyl and Rahnella aquatilis (Ra39) on Chitinase and β-1, 3-glucanase Activities and Disease Resistance of Apple Plants

  • Abo-Elyousr, A.M. Kamal;Sallam, M.A.A.;Hassan, M.H.A.;Zeller, W.
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • The effect of Acibenzolar-S-methyl (ASM) and Rahnella aquatilis Ra39 against apple fire blight disease caused by Erwinia amylovora were tested as a possible alternative to streptomycin. In vitro studies, no inhibition effect against the pathogen was found when ASM was tested. Under greenhouse conditions, application of R. aquatilis Ra39 with the highly susceptible M26 rootstock resulted in a marked disease suppression. Application of ASM and strain Ra39 caused a high decrease of the disease, 82% and 58% respectively; this was correlated with a reduction of the growth of the pathogen within host plants up to 64% and 49.5% respectively. Further studies in the field under artificial infection condition during full bloom revealed that application of ASM and R. aquatilis Ra39 with Gala variety resulted in a control effect up to 21 and 29% respectively. In physiological studies, enhanced activities of PR-proteins (chitinase and $\beta$-1, 3-glucanase) were detected, which are well known as biochemical markers for systemic acquired resistance. Application of ASM to apple shoots caused the highest chitinase activity followed by strain Ra39. The enzyme activity was increased after 2, 4 and 6 days from application. In addition, ASM-treatment caused the higher $\beta$-1, 3-glucanase activity than strain Ra39. Maximum enzyme activity was recorded after 6 days from application and then decreased after 8 and 10 days from application.

The number of primitive endoderm cells in the inner cell mass is regulated by platelet-derived growth factor signaling in porcine preimplantation embryos

  • Jong-Nam Oh;Mingyun Lee;Gyung Cheol Choe;Dong-Kyung Lee;Kwang-Hwan Choi;Seung-Hun Kim;Jinsol Jeong;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1180-1189
    • /
    • 2023
  • Objective: Discovering the mechanism of cell specification is important to manipulate cellular lineages. To obtain lineage-specific cell lines, the target lineage needs to be promoted, and counterpart lineages should be suppressed. Embryos in the early blastocyst stage possess two different cell populations, the inner cell mass (ICM) and trophectoderm. Then, cells in the ICM segregate into epiblasts (Epi) and primitive endoderm (PrE). PrE cells in embryos show specific expression of platelet-derived growth factor (PDGF) and its receptor, PDGF receptor A (PDGFRA). In this study, we suppressed PDGF signaling using two methods (CRISPR/Cas9 injection and inhibitor treatment) to provide insight into the segregation of embryonic lineages. Methods: CRISPR/Cas9 RNAs were injected into parthenogenetically activated and in vitro fertilized embryos. The PDGF receptor inhibitor AG1296 was treated at 0, 5, 10, and 20 µM concentration. The developmental competence of the embryos and the number of cells expressing marker proteins (SOX2 for ICM and SOX17 for PrE) were measured after the treatments. The expression levels of the marker genes with the inhibitor were examined during embryo development. Results: Microinjection targeting the PDGF receptor (PDGFR) A reduced the number of SOX17-positive cell populations in a subset of day 7 blastocysts (n = 9/12). However, microinjection accompanied diminution of Epi cells in the blastocyst. The PDGF receptor inhibitor AG1296 (5 µM) suppressed SOX17-positive cells without reducing SOX2-positive cells in both parthenogenetic activated and in vitro fertilized embryos. Within the transcriptional target of PDGF signaling, the inhibitor significantly upregulated the Txnip gene in embryos. Conclusion: We identified that PDGF signaling is important to sustain the PrE population in porcine blastocysts. Additionally, treatment with inhibitors was a better method to suppress PrE cells than CRISPR/Cas9 microinjection of anti-PDGF receptor α gene, because microinjection suppressed number of Epi cells. The PDGF receptor might control the number of PrE cells by repressing the proapoptotic gene Txnip. Our results can help to isolate Epi-specific cell lines from blastocysts.