• Title/Summary/Keyword: POGO

Search Result 41, Processing Time 0.042 seconds

Review of POGO and PSD (POGO와 PSD의 소개)

  • 고광웅;이한주;정동운;이상용
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • To reduce the possibility of longitudinal dynamic instability, called "POGO", in the liquid rocket system due to the feedback effect of a main structure and a fuel-feeding system, several different types of PSD(POGO Suppression Device) systems have been studied. In the present study, several different types of PSD were reviewed. Basically, all PSD systems can be categorized into two groups; a passive PSD or an active PSD. We can classify the passive PSD's into more detailed groups according to their compliance methods; localized compliance methods or distributed compliance methods. As a result of our intensive review on various PSD's, the gas-filled accumulator with a level control system is considered to be the most suitable one to suppress the POGO instability without mal-effects to the performance of a fuel-feeding system.ng system.

POGO Suppression Device Modeling and Main Parameter Analysis (POGO 억제장치 모델링 및 주요 변수의 정량화)

  • Lee, Han-Ju;Kim, Ji-Hoon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.177-182
    • /
    • 2008
  • In this article, a mathematical modeling which is composed of linearized transfer functions on POGO suppression device was executed. The main parameters of PSD model can not be easily determined from the analysis due to the nonlinearity of the parameters. This article deals a method to get the values of the main parameters from the experimental results.

  • PDF

Characteristic Analysis of Signal Transmission for Pogo Pin using De-embedding Method (De-embedding 방법을 이용한 Pogo Pin의 신호 전달 특성 분석)

  • Ryu, Dae-Hyeon;Kim, Jin-Hee;Bae, Hyeon-Ju;Pu, Bo;Nah, Wan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1668-1669
    • /
    • 2011
  • 본 논문에서는 Pogo Pin의 신호 전달 특성을 Ansys사의 Full wave simulation tool(HFSS)를 사용하여 분석하였고, 측정을 위해서 필요한 interface(Guide PCB)의 특성은 2-port de-embedding 방법을 이용하여 제거하였다. Guide PCB의 특성이 제거된 Pogo Pin만의 시뮬레이션 결과와 circuit simulator인 Agilent사의 ADS를 사용하여 Guide PCB의 특성을 de-embedding한 결과를 비교 검증하였고, Pogo Pin의 시뮬레이션 결과와 PCB의 특성을 de-embedding한 결과가 0~8 GHz까지 일치하는 것을 확인하였다.

  • PDF

A Study on the Analysis of Pogo Stability of Liquid Propellant Rocket (액체추진로켓의 포고 안정성 해석에 관한 연구)

  • 장홍석;연정흠;윤성기;정태규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.10-13
    • /
    • 2002
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. The constitutive equation of propulsion system is a homogeneous second-order equation form in the Laplace domain. Rocket structure is modeled using FEM. From the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed of all propulsion system equations and vehicle motion equations reacting on the vehicle by each component of propulsion system. The stability is obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability is carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

  • PDF

Dynamic Characteristic Analysis of KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 동특성 해석)

  • 정태규;정영석;조인현;권오성;정동호;이대성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.75-82
    • /
    • 2001
  • KSR-III propulsion feeding system is designed to feed a certain amount of propellant to engine by the end of combustion. The oscillation of propellant to engine would cause combustion instability and thrust oscillation and POGO phenomenon. This article deal with analysis performed such as the effect of rocket acceleration on the propulsion system and POGO analysis to ensure the performance of KSR-III

  • PDF

Structural Dynamic Analysis of a Space Launch Vehicle using an Axisymmetric Two-dimensional Shell Element

  • Sim, JiSoo;Lee, SangGu;Kim, JunBeom;Shin, SangJoon;Park, SeungSoo;Ohm, WonSuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.485-497
    • /
    • 2017
  • The pogo phenomenon refers to a type of multidiscipline-related instability found in space launch vehicles. It is caused by coupling between the fuselage structure and other structural propulsion components. To predict the pogo phenomenon, it is essential to undertake adequate structural modeling and to understand the characteristics of the feedlines and the propulsion system. To do this, a modal analysis is conducted using axisymmetric two-dimensional shell elements. The analysis is validated using examples of existing launch vehicles. Other applications and further plans for pogo analyses are suggested. In addition, research on the pogo phenomenon of Saturn V and the space shuttle is conducted in order to constitute a pogo stability analysis using the results of the present modal analysis.

A Study on the Analysis of Pogo Instability and Its Suppression of Liquid Propellant Rocket (액체추진 로켓의 포고 불안정성 해석과 제어에 관한 연구)

  • Jang, Hong Seok;Yeon, Jeong Heum;Yun, Seong Gi;Jeong, Tae Gyu;Jang, Yeong Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.58-64
    • /
    • 2003
  • Pogo is the instability resulting from the interaction between rocket structure and propulsion system of liquid propellant rocket. The coupling of structure and propulsion system can lead to severe problem in rocket. For the analysis of pogo, a time-invariant linearized mathematical model is developed for a selected flight time. Propulsion system is modeled using element representations for each components. Rocket structure is modeled using FEM. Form the results of modal analysis of structure, the behavior of structure can be represented. System equations for coupling structure and propulsion system are composed. The stability in obtained by the eigen solution of system matrix. The optimization of the design variables such as size, place of accumulator for suppressing pogo instability in carried out. This article of study can be used to determine the degree of stability, and guide the design of pogo suppression system.

Design of POGO Supporession Device Performance Test System (POGO 억제장치 성능 시험기 설계)

  • Lee, Han-Ju;Kim, Ji-Hun;Jeong, Dong-Ho;O, Seung-Hyeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.181-187
    • /
    • 2006
  • The present study deals with the experimental facility for PSD (POGO Suppression Device) performance test systems. Basically there are two methods to pulsate the system; whole-feeding-system pulsation and working-fluid pulsation. The latter method adopts either a piston-type pulsator or a restrict-type pulsator. The working-fluid pulsation using a restrict-type pulsator was considered to be the most appropriate experimental system to study the effects of the primary parameters, and a practical design of the system was proposed. Also, the experimental facility adopts the ball valve type pulsator considering the leak problem of the plate type pulsator.

  • PDF

Pogo Analysis on the KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 pogo 해석)

  • Lee H.J.;Jung T.K.;Menshikova O. M.;Jung Y.S.;Cho I.H.;Oh S.H.;Seo K.S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.495-498
    • /
    • 2002
  • This article deals with the introduction of longitudinal instability of liquid rocket (pogo) and the analytical results on the frequency responses of KSR-III propulsion feeding system. Both the stiffness of bellows and the cavitation volume of venturi affect the frequency response of the feeding system. Especially, bellows has a great roll to reduce the natural frequency of the feeding system. Also, oxidizer and fuel feeding systems of the KSR-III have natural frequencies of ${\~}280Hz\;and\;{\~}90Hz$, respectively.

  • PDF

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle (예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측)

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Seo, Yongjun;Ann, Sungjun;Song, Huiseong;Kim, Youdan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-72
    • /
    • 2017
  • The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.