• Title/Summary/Keyword: PNPN

Search Result 6, Processing Time 0.022 seconds

Evaluation of Radio-Frequency Performance of Gate-All-Around Ge/GaAs Heterojunction Tunneling Field-Effect Transistor with Hetero-Gate-Dielectric by Mixed-Mode Simulation

  • Roh, Hee Bum;Seo, Jae Hwa;Yoon, Young Jun;Bae, Jin-Hyuk;Cho, Eou-Sik;Lee, Jung-Hee;Cho, Seongjae;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2070-2078
    • /
    • 2014
  • In this work, the frequency response of gate-all-around (GAA) Ge/GaAs heterojunction tunneling field-effect transistor (TFET) with hetero-gate-dielectric (HGD) and pnpn channel doping profile has been analysed by technology computer-aided design (TCAD) device-circuit mixed-mode simulations, with comparison studies among ppn, pnpn, and HGD pnpn TFET devices. By recursive tracing of voltage transfer curves (VTCs) of a common-source (CS) amplifier based on the HGD pnpn TFET, the operation point (Q-point) was obtained at $V_{DS}=1V$, where the maximum available output swing was acquired without waveform distortion. The slope of VTC of the amplifier was 9.21 V/V (19.4 dB), which mainly resulted from the ponderable direct-current (DC) characteristics of HGD pnpn TFET. Along with the DC performances, frequency response with a small-signal voltage of 10 mV has been closely investigated in terms of voltage gain ($A_v$), unit-gain frequency ($f_{unity}$), and cut-off frequency ($f_T$). The Ge/GaAs HGD pnpn TFET demonstrated $A_v=19.4dB$, $f_{unity}=10THz$, $f_T=0.487$ THz and $f_{max}=18THz$.

A Study on AC Modeling of the ESD Protection Devices (정전기 보호용 소자의 AC 모델링에 관한 연구)

  • Choi, Jin-Young
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.136-144
    • /
    • 2004
  • From the AC analysis results utilizing a two dimensional device simulator, the ac equivalent-circuit modeling of the ESD protection devices is executed. It is explained that the ac equivalent circuit of the NMOS protection transistor is modeled by a rather complicated form and that, depending on the frequency range, the error can be large if it is modeled by a simple RC serial circuit. It is also shown that the ac equivalent circuit of the thyristor-type pnpn protection device can be modeled by a simple RC serial circuit. Based on the circuit simulations utilizing the extracted equivalent circuits, the effects of the parasitics in the protection device on the characteristics of LNA are examined when the LNA, which is one of the important RF circuits, is equipped with the protection device. It is explained that a large error can result in estimating the circuit characteristics if the NMOS protection transistor is modeled by a simple capacitor. It is also confirmed that the degradation of the LNA characteristics by incorporating the ESD protection device can be reduced a lot by adopting the suggested pnpn device.

  • PDF

A Study on Converter Circuit Analysis Using GTO Device Modeling (GTO DEVICE의 MODELING에 의한 변환 회로 해석)

  • Seo, Young-Soo;Sung, Dae-Yong;Cho, Moon-Taek;Lee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1016-1018
    • /
    • 1992
  • A numerical model of a three junction device is presented. It allows the simulation of the external characteristics of the PNPN family devices and in this work the simulation of gate turn-off thyristor(GTO) is particularly considered. The proposed PNPN device simulation model solves all the drawbacks presented by the previous work, simulates the GTO well, and fulfills.

  • PDF

InGaAs-based Tunneling Field-effect Transistor with Stacked Dual-metal Gate with PNPN Structure for High Performance

  • Kwon, Ra Hee;Lee, Sang Hyuk;Yoon, Young Jun;Seo, Jae Hwa;Jang, Young In;Cho, Min Su;Kim, Bo Gyeong;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.230-238
    • /
    • 2017
  • We have proposed an InGaAs-based gate-all-around (GAA) tunneling field-effect transistor (TFET) with a stacked dual-metal gate (DMG). The electrical performances of the proposed TFET are evaluated through technology computer-aided design (TCAD) simulations. The simulation results show that the proposed TFET demonstrates improved DC performances including high on-state current ($I_{on}$) and steep subthreshold swing (S), in comparison with a single-metal gate (SMG) TFET with higher gate metal workfunction, as it has a thinner source-channel tunneling barrier width by low workfunction of source-side channel gate. The effects of the gate workfunction on $I_{on}$, the off-state current ($I_{off}$), and S in the DMG-TFETs are examined. The DMG-TFETs with PNPN structure demonstrate outstanding DC performances and RF characteristics with a higher n-type doping concentration in the $In_{0.8}Ga_{0.2}As$ source-side channel region.

Frequency controllable fast switching gate driver for self-resonant inverters (주파수 조절이 가능한 자려식 공진형 인버터의 고속 게이트 구동회로)

  • Ryoo, Tae-Ha;Chae, Gyun;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2783-2785
    • /
    • 1999
  • A fast switching gate driver suitable for high performance self resonant electronic ballasts is presented. The proposed gate driver has negligible switching loss and driving loss owing to pnpn structure and zero voltage switching( ZVS ); moreover, the gate driver has frequency control capability. Therefore, a self resonant inverter using proposed gate driver can operate as external exciting resonant inverters. The experiments confirm that the proposed gate driver perform the desired operations over full power control range for 40W fluorescent lamp electronic ballast.

  • PDF

A study on the design of thyristor-type ESD protection devices for RF IC's (RF IC용 싸이리스터형 정전기 보호소자 설계에 관한 연구)

  • Choi, Jin-Young;Cho, Kyu-Sang
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.172-180
    • /
    • 2003
  • Based on simulation results and accompanying analysis, we suggest a thyristor-type ESD protection device structure suitable for implementation in standard CMOS processes to reduce the parasitic capacitances added to the input nodes, which is very important in CMOS RF ICs. We compare DC breakdown characteristics of the suggested device to those of a conventional NMOS protection device to show the benefits of using the suggested device for ESD protection. The characteristic improvements are demonstrated and the corresponding mechanisms are explained based on simulations. Structure dependencies are also examined to define the optimal structure. AC simulation results are introduced to estimate the magnitude of reduction in the added parasitic capacitance when using the suggested device for ESD protection. The analysis shows a possibility of reducing the added parasitic capacitance down to about 1/40 of that resulting with a conventional NMOS protection transistor, while maintaining robustness against ESD.

  • PDF