• Title/Summary/Keyword: PMV index

Search Result 30, Processing Time 0.028 seconds

The Validation Study of Shaping Comfortable Environments Based on the PMV Index Using Facial Skin Temperature (안면 피부온도를 활용한 PMV 지표 기반 쾌적환경 조성의 타당성 연구)

  • Kim, Boseong;Min, Yoon-Ki;Shin, Esther;Kim, Jin-Ho
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.311-318
    • /
    • 2013
  • This research examined the validity of whether the PMV index-based comfort- or uncomfort-indoor environments could be classified by the facial skin temperature, one of the physiological indicator for human. To do this, we distinguished between a comfort thermal environment and an uncomfort thermal environment using the PMV value, and then facial skin temperatures were measured in both environments. As a result, the facial skin temperature of occupants were different between the comfort- and uncomfort-indoor environments. It suggested that the facial skin temperature could be used in shaping the comfortable indoor environment based on the PMV index. While this result suggested the PMV index-based on comfort and uncomfort indoor environments could not be valid, because the facial skin temperature was lower in the uncomfort thermal environment than in the comfort thermal environment.

  • PDF

An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index (PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션)

  • Seong, Nam-Chul;Yoon, Dong-Won
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Thermal comfort provide satisfaction of thermal environment and affects productivity of occupants in residential building. However, temperature control can not provide the thermal comfort at all the time. because thermal comfort is influenced by many environmental variables such as temperature, relative humidity, air velocity, radiation temperature, activity level and clothing insulation. The purpose of this study is that predicted mean vote(PMV) index is used as control. And, Thermal comfort is evaluated both PMV control and temperature control by simulation. Each other cases were compared, in which set-point temperatures of $22^{\circ}C$ and $24^{\circ}C$ and, set-point PMV index through the respective heating season in the simulation. The results show that PMV control is better to maintain comfort state and save energy than temperature control.

Evaluation of Comfort Performance for Modernized Hanok: Targeting Hanok Residence at the Jamjeong-Haetsal Village in Hwasun, Jeonnam Province (신한옥의 쾌적성능 평가: 전남 화순 잠정햇살마을 한옥단지를 대상으로)

  • Choe, Seung-Ju;Lee, Mihyang;Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • With increasing interest in living in hanoks, there's a growing need for more quantitative data on the thermal comfort performance of modern hanoks. With that in mind, this research project studied a modern hanok located in Jamjeong-Haetsal Village in Hwasun, Jeollanam Province as a case study to evaluate the Predicted Mean Vote (PMV) of modernized hanoks. Based on environmental data collected at the hanok and computer simulation both Life-Cycle PMV (L.C.PMV) and Normal PMV (N.PMV) were calculated for the hanok. Study results showed that during the summer and winter seasons the PMV and heat index at major heat and major cold weather points significantly deviated from the comfort zone. The rate of change in PMV was also greater in the winter than in the summer. The study found that the modern hanok lacks proper thermal insulation for maintaining thermal comfort.

Development and Evaluation of a PMV Sensor for the Control of Indoor Thermal Environment (실내 온열환경 제어를 위한 PMV 센서의 개발 및 적용성 평가연구)

  • 윤동원;강효석;안병욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.870-878
    • /
    • 2003
  • The maintenance of thermal equilibrium between the human body and its environment is one of the primary requirements for health, wellbeing and comfort. For the effective control of indoor thermal environment, thermostat or humidistat is used. But, it is not sufficient to control the indoor thermal environment using only one or two parameters as human response for the indoor comfortable environment. So an environmental thermal index is required for the control of indoor thermal environment effectively. In this study, a PMV sensor has been developed which has integrated from various kinds of individual sensors for temperature, humidity, air velocity, radiant temperature. After applying the PMV and PPD equation, it is possible to monitor the indoor thermal environment with the sensor system, which is adopted to the circuit for optimization according to the human response with the metabolic rate and activities. The measurement was carried out to verify the performance of the integrated sensor system in comparison with existing measurement system, the PMV meter. As a result, the possibility of applying the PMV sensor to control the indoor thermal environment simultaneously was examined.

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

Evaluation of the Indoor Thermal Comfort in Consideration of the Solar Radiation (태양 일사를 고려한 실내 열쾌적성 평가 연구)

  • Kim Se-Hyun;Noh Kwang-Chul;Oh Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1140-1148
    • /
    • 2004
  • Recently the Predicted Mean Vote (PMV) has been used as an important index to evaluate the degree of the indoor thermal comfort in modern residential buildings. It is known that the PMV is mainly affected by four major factors, which are the air temperature, the air velocity, the humidity and the mean radiant temperature (MRT). Through the numerical calculation of the temperature and the modeling of the mean radiant temperature considering the solar radiation, we proposed the new modeling strategies of the mean radiant temperature and investigated the PMV index and evaluated the MRT. Also, we compared the numerical results with the experimental values. As the results, we found out that the MRT is affected by the wall temperature and the solar radiation. We also knew that the new modeling strategies of the mean radiant temperature is a more correct way of PMV calculation. Especially, the new modeling is necessary for the spaces like an atrium and large rooms with windows mainly influenced by solar radiation.

Evaluation of Thermal Comfort in Task Area with Personal Air-Conditioning System(PACS) b PMV Index (PMV 지표에 의한 개별 공조시스템(PACS)의 쾌적성 평가에 관한 연구)

  • 최익순;정광섭;박영칠;한화택;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.647-652
    • /
    • 2001
  • The thermal comfort of indoor spaces is very important factor in our life. Regions, cultures, climates and individual difference for establishing thermally comfortable environments should be considered carefully because these factors have a large influence on the thermal comfort doing some complicated interactions with environmental, psychological and physical elements. Recently, predicted mean vote(PMV) based on the heat transfer theory between environmental factors and human bodies has evaluated by many researchers and widely used nowadays. The objective of this study is to evaluate the thermal comfort in workspaces with personal air conditioning system using the measurements of environmental comfort parameters and the questionnaire survey of occupant's thermal senses with response to the environment.

  • PDF

Comparison of Thermal Comfort Performance Indices for Cooling Loads in the Lecture Room - An Correlation of PMV Bnd EDT - (강의실에서의 냉방부하에 따른 열쾌적성 평가지표 비교 - PMV와 EDT의 연관성 -)

  • Noh Kwang-Chul;Oh Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.868-877
    • /
    • 2005
  • We performed the experimental and the numerical study on the comparison of thermal comfort performance indices for cooling loads in the lecture room for 4 cases: Fan coil unit(FCU) or 4-way cassette air-conditioner is respectively operated with the ventilation system or without. We measured the velocity, the temperature distribution and predicted mean vote(PMV) value in the lecture room for 4 different air-conditioning methods. Effective draft temperature(EDT) and PMV were investigated to analyze the characteristics of two thermal comfort indices in the lecture room and to compare their values each other. From the results we knew that there is the similarity between PMV values and EDTs when the room is air-conditioned for cooling loads. It turned out that definition of the control temperature is very important when the EDT is calculated. Finally EDT should not be used to predict the accurate thermal comfort in case that the temperature and humidity are suddenly varied and the zone affected by the solar and inner wall radiation.

Effect of Thermal Environment and Illuminance on the Occupants Works based on the Electroencephalogram and Electrocardiogram Analysis (뇌파와 심전도 분석을 기반으로 한 온열환경 및 조도가 재실자의 업무에 미치는 영향)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.95-106
    • /
    • 2014
  • This research analyzed biosignals associated with the change of emotion from lighting felt by the occupants and task type under various indoor thermal environments and illuminance, and examined the biosignals' impacts on work. To this end, the indoor thermal environment was constructed on the basis of PMV (predicted mean vote) index value, and various indoor environments were created by changing the brightness of LED stands. In this manner, a variety of indoor environments were constructed, and experiments were carried out. This research evaluates the sensibility response to lighting through a questionnaire survey in the given environment and incorporates different types of error searches. In this way, changes were analyzed by measuring electroencephalogram (EEG) and electrocardiograms (ECG). As a result, all biosignals on the task type showed significant differences from the thermal environment change. When PMV index value was 0.8 (temperature: $25^{\circ}C$, humidity: 50 %), concentration and attention were the most activated. However, the biosignals did not show significant differences from the illuminance change. Concentration on an occupant's work capability was confirmed to be closely related to the thermal environment. As for the subjective emotional response to lighting, the occupants felt comfort as illuminance was lower, while they felt discomfort as illuminance was higher. However, there were no significant differences from the thermal environment change.