• 제목/요약/키워드: PMA-SiO2

검색결과 4건 처리시간 0.028초

Phosphomolybdic Acid Supported on Silica Gel as an Efficient and Reusable Catalyst for Cyanosilylation of Aldehydes

  • Kadam, Santosh T.;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1320-1322
    • /
    • 2008
  • Phosphomolybdic acid supported on silica gel (PMA-$SiO_2$) is an efficient catalyst for the activation of TMSCN for the facile cyanosilylation of various aldehydes. Cyano transfer from TMSCN to aldehyde proceeds smoothly at rt in presence of 0.8 mol % of PMA-$SiO_2$ leading to a range of cyanosilylether in excellent yield (mostly over 93%) within short reaction time (30 min). The catalyst can be recovered and reused several times without loss of activity.

질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거 (Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method)

  • 최재영;김도연;김우병
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.118-123
    • /
    • 2018
  • 5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

Process Temperature Dependence of Al2O3 Film Deposited by Thermal ALD as a Passivation Layer for c-Si Solar Cells

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.581-588
    • /
    • 2013
  • This paper presents a study of the process temperature dependence of $Al_2O_3$ film grown by thermal atomic layer deposition (ALD) as a passivation layer in the crystalline Si (c-Si) solar cells. The deposition rate of $Al_2O_3$ film maintained almost the same until $250^{\circ}C$, but decreased from $300^{\circ}C$. $Al_2O_3$ film deposited at $250^{\circ}C$ was found to have the highest negative fixed oxide charge density ($Q_f$) due to its O-rich condition and low hydroxyl group (-OH) density. After post-metallization annealing (PMA), $Al_2O_3$ film deposited at $250^{\circ}C$ had the lowest slow and fast interface trap density. Actually, $Al_2O_3$ film deposited at $250^{\circ}C$ showed the best passivation effects, that is, the highest excess carrier lifetime (${\tau}_{PCD}$) and lowest surface recombination velocity ($S_{eff}$) than other conditions. Therefore, $Al_2O_3$ film deposited at $250^{\circ}C$ exhibited excellent chemical and field-effect passivation properties for p-type c-Si solar cells.

저온 열처리를 통한 MOSFETs 소자의 방사선 손상 복구 (Recovery of Radiation-Induced Damage in MOSFETs Using Low-Temperature Heat Treatment)

  • 박효준;길태현;연주원;이문권;윤의철;박준영
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.507-511
    • /
    • 2024
  • Various process modifications have been used to minimize SiO2 gate oxide aging in metal-oxide-semiconductor field-effect transistors (MOSFETs). In particular, post-metallization annealing (PMA) with a deuterium ambient can effectively eliminate both bulk traps and interface traps in the gate oxide. However, even with the use of PMA, it remains difficult to prevent high levels of radiation-induced gate oxide damage such as total ionizing dose (TID) during long-term missions. In this context, additional low-temperature heat treatment (LTHT) is proposed to recover from radiation-induced damage. Positive traps in the damaged gate oxide can be neutralized using LTHT, thereby prolonging device reliability in harsh radioactive environments.