• Title/Summary/Keyword: PM flux linkage

Search Result 32, Processing Time 0.026 seconds

MTPA control algorithm for an IPMSM drive reflecting the PM flux linkage variation (영구자석 쇄교 자속 변화를 고려한 매입형 영구자석 동기전동기의 MTPA 제어 알고리즘 개발)

  • Sungmin, Choi;Seong-ho, Ryu;Jae Suk, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.653-658
    • /
    • 2022
  • This paper presents a Maximum Torque per Ampere (MTPA) control algorithm for an interior permanent magnet synchronous motor (IPMSM) drive considering the permanent magnet (PM) flux linkage variations due to PM temperature variation. PM flux linkage are estimated in real time via a Gopinath style stator flux linkage observer and a torque error correction factor is calculated from the estimated PM flux linkage. A 2-dimensional (2D) MTPA look-up table (LUT) is developed to achieve the MTPA trajectory reflecting PM flux linkage variation for compensating torque error occurred by parameter variation. The proposed IPMSM control algorithm is verified through simulations.

Torque error compensation of SPMSM drives with a stator flux linkage observer at low speed (쇄교자속관측기를 이용한 저속 영역에서의 표면부착형 영구자석 동기전동기의 토크 오차 보상기법)

  • Choi, Sung-min;Park, Chang-Seok;Lee, Jae-Suk
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1031-1035
    • /
    • 2018
  • A compensation algorithm targeting for torque development from a SPMSM including a low speed operation is presented in this paper. As known, PM flux linkage in SPMSM is varied by temperature. Maximum Torque per Ampere (MTPA) uses the calculated PM flux linkage, and torque error occurs due to change of PM flux linkage. In the manuscript, estimated PM flux linkage is obtained using a stator flux observer. The torque error is corrected using the estimated PM flux linkage. The proposed algorithm is implemented and verified in simulation and experiment.

Torque Ripple Reduction based on Flux Linkage Harmonics Observer for an Interior PM Synchronous Motor including Back EMF Harmonics (왜곡된 역기전력을 갖는 매입형 영구자석 동기전동기의 쇄교자속 고조파 관측기를 이용한 토크리플 저감)

  • Jin, Yong-Sin;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The mechanical vibration of a PM synchronous motor at low speeds due to the back emf harmonics may be serious problems in some application such as MDPS(Motor driven power steering), electric vehicles. In this paper, torque ripple reduction for an interior PM synchronous motor including back emf harmonics is proposed. The dq flux linkage harmonics of the permanent magnet are estimated on real time by using the dq currents of the real system and the model of the MRAS observer. Based on the estimated flux linkage harmonics, the dq harmonic currents for reducing the torque ripples are compensated on the dq reference currents. The estimation of the flux linkage harmonics by the MRAS observer and the torque ripple reduction of the proposed algorithm was verified by the simulation and experiment.

D-Q Flux Linkage Identification for Interior Buried Permanent Magnet Synchronous Motor considering Cross-Magnetization (교차자화작용을 고려한 매입형 영구자석 동기전동기의 통합형 d-p축 쇄교자속 추출)

  • Kim, Min-Seok;Kwak, Sang-Yeop;Jung, Hyun-Kyo;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2116-2121
    • /
    • 2007
  • Numerical identification of synthetic d-q flux linkage, representative parameters for analyzing interior buried PM synchronous Motor(IPMSM) with distinguished magnetic saturation, has been peformed. Particularly, numerical identification of synthetic flux linkage using modified Finite Element Method(F.E.M) has been taken cross-magnetization of multi-layered PM configuration into consideration. Futhermore, experimental identification on the purpose-built prototype has been made to verify the validity of the numerically identified synthetic d-q flux linkages.

The Study of Overhang Effect of a Novel Axial Flux Permanent Magnet Motor with a Double sided Airgap (양측면식 평판형 영구 자석 동기 전동기의 오버행 효과에 관한 연구)

  • Jo, Won-Young;Lee, In-Jae;Kim, Byung-Kuk;Kim, Tae-Hyun;Hwang, Dong-Won;Cho, Yun-Hyun;Chun, Yon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1174-1176
    • /
    • 2005
  • The permanent magnet(PM) overhang effect has been generally used to enhance the linkage flux in the motor. In this paper, we quantitatively investigate the PM overhang effect in the new type axial flux permanent magnet(AFPM) motor with a double-sided airgap. The motor performances such as linkage flux, back electromotive force(EMF), magnetic force, etc. were analyzed according to the variation of the overhang angle. From the results, we can select the proper overhang angle of PM which improves the performance of the AFPM motor.

  • PDF

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

Topology Optimal Interior Permanent Magnet Machine to Improve the Utilization Ratio of Permanent Magnet (영구자석 사용 효율 향상을 위한 IPM 전동기의 최적 토폴로지)

  • Tao, Xu;Zhang, Dianhai;Zhu, Lixun;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.862-863
    • /
    • 2015
  • This paper presents an improved estimation procedure for the contribution to no-load flux linkage created by the permanent magnet (PM) in interior permanent magnet synchronous machines. In the proposed method, the saturation effect in stator and rotor cores are taken into account by utilizing the frozen permeability method (FPM). This improved procedure can evaluate the contribution for each local element in the PM to the no-load flux linkage. According to the analysis results, an effective PM topology optimal design can be carried out to achieve high utilization ratio of PM in the machine. In order to determine the threshold of the low contribution of PM for removing, one multi-objective optimization model is proposed. Based on the optimal threshold, the final optimal topology design of PM can be achieved.

  • PDF

Torque Ripple Reduction of an Interior PM Synchronous Motor by Compensating Harmonic Currents Based on Flux Linkage Harmonics

  • Nam, Myung Joon;Kim, Jong Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Cho, Younghoon
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1223-1230
    • /
    • 2017
  • The back emf harmonics of a permanent magnet (PM) synchronous motor is a major source of torque ripple. For torque control applications including column fitted MDPS (motor driven power steering) systems, it is essential to reduce the mechanical vibrations due to torque ripples at low speeds. In this paper, a torque ripple reduction algorithm for interior PM synchronous motors is proposed. The harmonic currents that cancel the $6^{th}$ order torque harmonic are added to the nominal dq currents for MTPA (maximum torque per ampere) operation. The compensated harmonic currents are derived from flux linkage harmonics based on a FFT analysis of the back emf harmonics. Simulation and experimental results verify that the $6^{th}$ order torque harmonic and THD of the torque ripple are reduced by compensating the dq harmonic currents.

Adaptive Flux Observer with On-line Inductance Estimation of an Interior PM Synchronous Machine Considering Magnetic Saturation

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 2009
  • This paper presents an adaptive flux observer to estimate stator flux linkage and stator inductances of an interior permanent-magnet synchronous machine considering magnetic saturation. The concept of static and dynamic inductances due to saturation is introduced in the machine model to describe the relationship between current and flux linkage and the relationship between their time derivatives. A flux observer designed in the stationary reference frame with constant inductance is analyzed in the rotor reference frame by a frequency-response characteristic. An adaptive algorithm for an on-line inductance estimation is proposed and a Lyapunov-based analysis is given to discuss its stability. The dynamic inductances are estimated by using Taylor approximation based on the static inductances estimated by the adaptive method. The simulation and experimental results show the feasibility and performance of the proposed technique.

Reduction of Torque Ripple of PMSM Using Iterative Flux Estimation

  • Lee D. H.;Kim C. H.;Kwon Y. A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.346-350
    • /
    • 2001
  • PMSM drives are widely used in the industrial and residential applications because of high efficiency, high power density and high performance. For better performance of PMSM, however, torque ripples should be reduced. This paper investigates a reduction of torque ripple due to the unsinusoidal flux linkage produced by the shapes of stator slot and magnetic pole. To minimize torque ripple, a simple flux estimator is proposed. This method interatively compensates the distributed flux linkage from an error between the measured and estimated currents. The proposed algorithm is verified through simulation.

  • PDF