• Title/Summary/Keyword: PM Synchronous Motor

Search Result 201, Processing Time 0.038 seconds

Design PM slot of Line-Start Permanent magnet Synchronous Motors (직립 기동 영구자석 동기 전동기의 영구자석 슬롯 형상 설계)

  • Kim, Kwang-Hee;Kim, Sung-An;Park, Dae-Geun;Jang, Jin-Hak;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.967-968
    • /
    • 2011
  • 직립 기동 영구자석 동기 전동기(Line-Start Permanet Magnet Synchronous Motor : LSPM)는 기존 3상 유도기에 비해 높은 효율과 역율을 가진다. 또한 제어기를 사용하지 않고 기동 할 수 있다는 장점 때문에 펌프나 팬 등에 단순한 구동원에 적용 할 수 있는 전동기이다. 구조는 유도기와 달리 영구자석이 매입되기 때문에 이에 따라 영구자석의 위치와 크기에 따라 모터의 특성이 변화 한다. 본 논문에서는 실험 계획법과 FEM 유한 요소법을 이용하여 영구자석의 크기는 고정되어 있는 상태에서 영구자석 슬롯의 모양만을 설계 인자에 따라 해석하였다. 그리고 해석을 통한 결과를 비교 분석하여 직립기동 영구자석 동기 전동기의 효율과 토크특성을 개선하고자한다.

  • PDF

Structure Optimization of Double-Sided Iron-Core Type Permanent Magnet Linear Synchronous Machine Using Response Surface Method (반응표면법을 이용한 양측 철심형 영구자석 선형 동기기의 구조 최적화)

  • Lee, Sang-Geon;Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1210-1211
    • /
    • 2011
  • The inherent drawback of iron-core type permanent magnet linear synchronous motor (PMLSM) is detent force that is dependent on several major factors such as PM length, slot clearance, and skewing. To minimize the detent force, this paper proposes a structure optimization using the combination computation of two dimensional (2-D) finite element analysis (FEA) and response surface methodology (RSM). The RSM, that is a collection of the statistical and mathematical techniques, is utilized to predict the global optimal solution based on the FEA calculated results of the detect forces for different combinations of factors. With the help of the combination computation the high capacity iron-core type PMLSM with more than 12000 N propulsion forces only contains less than 3 N detent forces.

  • PDF

Torque Ripple Minimization in a PM Synchronous Motor with Back EMF Estimation (역기전력 추정에 의한 영구자석형 동기 전동기의 토오크 리플의 저감화)

  • Cho, Kwan-Yuhl;Bae, Jung-Do;Chung, Se-Kyo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1167-1171
    • /
    • 1992
  • A predictive current control in the synchronous reference frame with the back EMF estimation using the previous voltages and currents is proposed. To reduce the torque ripple produced by harmonics in the air gap flux, the q-axis current is compensated using the estimated torque constant. The effectiveness of the proposed control is compared to the conventional control scheme through the simulation.

  • PDF

A Study for Improving a Thermal Performance of Liquid Cooled Permanent Magnet Synchronous Machine with Concentrated Winding (집중권 방식 영구자석 동기전동기의 냉각특성 개선에 관한 연구)

  • Kang, Kyong-Ho;Ahn, Su-Hong;Yoon, Young-Duk;Yu, Suk-Jin;Ahn, Hyo-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.555-566
    • /
    • 2012
  • This paper presents a thermal analysis of an interior PM synchronous machine with concentrated winding for electric vehicle. The conventional thermal equivalent network model has been used for a long time for calculation of the temperature rises in electrical machines. In spite of being popular, this method can not be applied correctly for elements with complicated cooling structure like liquid cooled housing. To overcome this drawbacks, in this paper, a hybrid thermal model using the result of CFD analysis partly. Using this method, to improve a thermal performance of PMSM with concentrated winding, the effects of two design parameters are analysed. Finally, the accuracy of this model has been verified by experiments for the developed 21kW motor.

Detent Force Minimization of Permanent Magnet Linear Synchronous Motor for Ropeless Elevator System Using Response Surface Method (반응표면법을 이용한 로프리스 엘리베이터용 영구자석 선형 동기전동기의 디텐트력 최소화)

  • Lee, Sang-Gun;Chung, Koon-Seok;Zhu, Yu-Wu;Kim, Do-Sun;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.812_813
    • /
    • 2009
  • 본 논문에서 로프리스 엘리베이터용 영구자석형(PM) 선형동기전동기(LSM)의 디텐트력을 저감하기 위하여 반응표면법(RSM)을 이용한 디텐트력의 최소화 설계 방법을 제안하였다. RSM을 이용하여 정수 슬롯형과 분수 슬롯형 PM-LSM의 설계변수를 추론하고 유한요소법(FEM)으로 디텐트력을 구하였다. 반응표면법과 유한요소법의 해석결과를 토대로 분수 슬롯형 PM-LSM이 주어진 체적의 엘리베이터 시스템에 적합한 형상임을 입증한다.

  • PDF

Improvement of Demagnetization by Rotor Structure of IPMSM with Dy-free Rare-Earth Magnet

  • Imamura, Keigo;Sanada, Masayuki;Morimoto, Shigeo;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Permanent magnet (PM) motors that employ rare-earth magnets containing dysprosium (Dy) are used in electric and hybrid electric vehicles. However, it is desirable to reduce the amount of Dy used since it is expensive. This study investigates the rotor structure of a PM synchronous motor with a Dy-free rare-earth magnet. Flux barrier shapes and PM thicknesses that enhance the irreversible demagnetization are investigated. In addition, a rotor structure that improves the irreversible demagnetization is proposed. We demonstrate that the proposed rotor structure without Dy improves the irreversible demagnetization.

A Novel Discrete predictive current control for PM-LSM (PM-LSM에 대한 새로운 예측 전류 제어)

  • Sun Jung-Won;Suh Jin-Ho;Lee Young Jin;Lee Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1220-1222
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PM-LSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. A new control strategy is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

MTPA control algorithm for an IPMSM drive reflecting the PM flux linkage variation (영구자석 쇄교 자속 변화를 고려한 매입형 영구자석 동기전동기의 MTPA 제어 알고리즘 개발)

  • Sungmin, Choi;Seong-ho, Ryu;Jae Suk, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.653-658
    • /
    • 2022
  • This paper presents a Maximum Torque per Ampere (MTPA) control algorithm for an interior permanent magnet synchronous motor (IPMSM) drive considering the permanent magnet (PM) flux linkage variations due to PM temperature variation. PM flux linkage are estimated in real time via a Gopinath style stator flux linkage observer and a torque error correction factor is calculated from the estimated PM flux linkage. A 2-dimensional (2D) MTPA look-up table (LUT) is developed to achieve the MTPA trajectory reflecting PM flux linkage variation for compensating torque error occurred by parameter variation. The proposed IPMSM control algorithm is verified through simulations.

Optimal Design of Interior PM Synchronous Machines Using Randomly-Guided Mesh Adaptive Direct Search Algorithms (RG-MADS를 적용한 매입형 영구자석 동기전동기의 최적설계)

  • Kim, Kwang-Duck;Lee, Dong-Su;Jung, Sang-Yong;Kim, Jong-Wook;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • Newly proposed RG-MADS (Randomly Guided Mesh Adaptive Direct Search) has been applied to the optimal design of Interior Permanent Magnet Synchronous Motor (IPMSM) which has the distinctive features of magnetic saturation. RG-MADS, advanced from classical MADS algorithm, has the superiority in computational time and reliable convergence accuracy to the optimal solution, thus it is appropriate to the optimal design of IPMSM coupled with time-consuming Finite Element Analysis (FEA), necessary to the nonlinear magnetic application for better accuracy. Effectiveness of RG-MADS has been verified through the well-known benchmark-functions beforehand. In addition, the proposed RG-MADS has been applied to the optimal design of IPMSM aiming at maximizing the Maximum Torque Per Ampere (MTPA), which is regarded as representative design goal of IPMSM.

Multiobjective Optimal Double-Layer PM Rotor Structure Design of IPMSM by Response Surface Method and Finite Element Method (반응표면법을 이용한 매입형 영구자석 동기전동기의 이층 영구자석 회전자 구조 다목적 최적 설계)

  • Choi, Gil-Sun;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.123-130
    • /
    • 2010
  • In general, a design method based on the equivalent magnetic circuit has been used for basic design of Interior Permanent Magnet Synchronous Motor(IPMSM). However, the equivalent magnetic circuit method has difficulty in considering the arrangement of PM. IPMSM has high degree of freedom for PM rotor design. In this paper, we proposed the multiobjective optimal design method considering the arrangement of PM for the double-layer PM rotor structure that minimizes the torque ripple as well as maximizes the torque of IPMSM. The design variables of double-layer PM rotor structure are obtained from the Response Surface Method. Torque and torque ripple were calculated by Finite Element Method.