• Title/Summary/Keyword: PM(particulate matter)

Search Result 820, Processing Time 0.022 seconds

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

Impact of Emission Inventory Choices on PM10 Forecast Accuracy and Contributions in the Seoul Metropolitan Area (배출량 목록에 따른 수도권 PM10 예보 정합도 및 국내외 기여도 분석)

  • Bae, Changhan;Kim, Eunhye;Kim, Byeong-Uk;Kim, Hyun Cheol;Woo, Jung-Hun;Moon, Kwang-Joo;Shin, Hye-Jung;Song, In Ho;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.497-514
    • /
    • 2017
  • This study quantitatively analyzes the effects of emission inventory choices on the simulated particulate matter (PM) concentrations and the domestic/foreign contributions in the Seoul Metropolitan Area (SMA) with an air quality forecasting system. The forecasting system is composed of Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Community Multi-Scale Air Quality (CMAQ). Different domestic and foreign emission inventories were selectively adopted to set up four sets of emissions inputs for air quality simulations in this study. All modeling cases showed that model performance statistics satisfied the criteria levels (correlation coefficient >0.7, fractional error <50%) suggested by previous studies. Notwithstanding the apparently good model performance of total PM concentrations by all emission cases, annual average concentrations of simulated total PM concentrations varied up to $20{\mu}g/m^3$ (160%) depending on the combination of emission inventories. In detail, the difference in simulated annual average concentrations of the primary PM coarse (PMC) was up to $25.2{\mu}g/m^3$ (6.5 times) compared with other cases. Furthermore, model performance analyses on PM species showed that the difference in the simulated primary PMC led to gross model overestimation in general, which indicates that the primary PMC emissions need to be improved. The contribution analysis using model direct outputs indicated that the domestic contributions to the annual average PM concentrations in the SMA vary from 44% to 67%. To account for the uncertainty of the simulated concentration, the contribution correction factor method proposed by Bae et al. (2017) was applied, which resulted in converged contributions(from 48% to 57%). We believe this study shows that it is necessary to improve the simulated concentrations of PM components in order to enhance the accuracy of the forecasting model. It is deemed that these improvements will provide more accurate contribution results.

Indoor PM2.5 Concentrations in Different Sizes of Pubs with Non-comprehensive Smoke-free Regulation (비 포괄적인 금연정책을 시행한 호프집의 면적에 따른 실내 PM2.5 농도)

  • Kim, Jeonghoon;Lim, Chaeyun;Lee, Daeyeop;Kim, Heyjin;Guak, Sooyoung;Lee, Na Eun;Kim, Sang Hwan;Ha, Kwon Chul;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • Objectives: The Korean government implemented a smoke-free regulation for pubs with a net indoor area of ${\geq}100m^2$ on January 1, 2014. The purpose of this study was to determine the indoor levels of concentrations of particulate matter smaller than $2.5{\mu}m$ ($PM_{2.5}$) in implemented and non-implemented pubs in Seoul and Changwon. Methods: $PM_{2.5}$ concentrations in fifty-two $100-150m^2$ (implemented) and fifty-seven < $100m^2$ (non-implemented) pubs were measured. A real-time aerosol monitor was used to measure $PM_{2.5}$ concentrations. Field technicians recorded characteristics of the pubs including net indoor area, indoor volume and presence of smoking rooms and counted the number of burning cigarettes, patrons and vents. Results: Differences between indoor and outdoor $PM_{2.5}$ concentrations in $100-150m^2$ and < $100m^2$ pubs were not significantly different in each city. Smoking was observed in 33% of $100-150m^2$ pubs and 51% of < $100m^2$ pubs. Average differences between indoor and outdoor $PM_{2.5}$ concentrations in the $100-150m^2$ and < $100m^2$ pubs were $79.2{\mu}g/m^3$ and $155.6{\mu}g/m^3$, respectively. When smokers were not observed, differences between indoor and outdoor $PM_{2.5}$ concentrations ware $12.4{\mu}g/m^3$ in $100-150m^2$ pubs and $24.5{\mu}g/m^3$ in < $100m^2$ pubs. Conclusion: Although the regulation was implemented only in ${\geq}100m^2$ pubs, a higher difference between indoor and outdoor $PM_{2.5}$ concentrations was observed in implemented and non-implemented pubs with smokers. Strict implementation of the regulation in all pubs is needed for better indoor air quality.

Ion Compositional Existence Forms of PM10 in Seoul Area (서울지역 미세먼지(PM10) 중 이온성분의 존재형태 추정)

  • Lee, Kyoung-Bin;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Particulate matter (PM) has emitted in many regions of the world and is causing many health-related problems. Thus reasonable politics and solutions are needed to reduce PM in Seoul. Further it is required to clearly explain the major portions of chemical components contained in $PM_{10}$ to figure out the characteristics of $PM_{10}$, and to develop effective reduction measures in order to decrease the adverse effects of $PM_{10}$. $PM_{10}$ samples were collected in Seoul and analyzed their ions to examine the physical and chemical characteristics of ionic species. Since hydrogen ion ($H^+$) and carbonate ion (${CO_3}^{2-}$)) cannot be analyzed by Ion chromatography (IC), concentrations of $H^+$ and ${CO_3}^{2-}$ were initially estimated by pH and equivalent differences between anions and cations in this study. Starting from the study findings, good combination results for compositional patterns between anions and cations were obtained by applying a mathematical modelling technique that was based on the mass balance principle. The ions in $PM_{10}$ were combined with $H^+$, ${CO_3}^{2-}$, and supplement for $NO_3{^-}$, $Cl^-$ formed such compounds $NH_4Cl$, $NH_4NO_3$, $CaSO_4$, $(NH_4)_2SO_4$, $NaNO_3$, NaCl, $Na_2CO_3$, and $(NH_4)_2CO_3$ in the study area.

Green Tea Root Is a Potential Natural Surfactant and Is Protective against the Detrimental Stimulant PM2.5 in Human Normal Epidermal Keratinocytes (녹차뿌리 특화 사포닌의 천연 계면 활성력을 이용한 새로운 안티폴루션 기작 연구)

  • Na, Hye-Won;Lee, Yeongran;Park, Jun Seong;Lee, Tae Ryoung;Kim, Hyoung-June
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • Green tea (Camellia sinensis L.) has been widely explored for its medicinal applications. However, most of the studies had targeted the green tea leaf, while other parts remained unexplored. In this study, protective effect of green tea root extract on Normal Human Epidermal Keratinocytes (NHEKs) against the damage induced by an external stimulant (PM2.5) was confirmed. Thirty-year-old green tea root samples were collected from Amorepacific's Dolsongi tea field and green tea root extract was prepared with 70% ethanol. Total crude saponin content in green tea root extract was 54%, which is much higher than that in ginseng extract. Our results suggest that green tea root extract can be used as a natural surfactant in cosmetics. For evaluating its protective effect against the damage induced by PM2.5, IL-36G was used as a biomarker. IL-36G mRNA expression level increased remarkable upon PM2.5 treatment in NHEKs. Moreover, IL-36G was recently reported to be expressed in psoriasis lesions. Results showed significant decrease of IL-36G expression by treatment of green tea root extract. In conclusion, thirty-year-old green tea root extract can be used as a natural surfactant with a high saponin content and may have protective effect against the damage induced by PM2.5.

Temporal Variation of Winter Indoor PM2.5 Concentrations in Dwellings in Ger Town of Ulaanbaatar, Mongolia (몽골 울란바토르시 게르촌 주택의 겨울철 실내 초미세먼지(PM2.5) 농도의 시간적 변이)

  • Lee, Boram;Jang, Yelim;Lee, Jiyoung;Kim, Yoonjee;Ha, Hunsung;Lee, Wooseok;Choe, Wooseok;Kim, Kyusung;Woo, Cheolwoon;Ochir, Chimedsuren;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.98-105
    • /
    • 2018
  • Objectives: In Mongolian housing, they use coal as a fuel for indoor heating and cooking. The combustion of coal releases particulate matter, which can affect indoor air quality. The purpose of this study was to analyze the concentrations of indoor $PM_{2.5}$ in winter time dwellings in ger town. Methods: In this study, indoor $PM_{2.5}$ concentrations, temperature and humidity in houses were measured by a real-time PM monitor, while the time activity patterns of the residents were also observed. Results: The correlation between factors that may affect the indoor air quality was analyzed.The indoor $PM_{2.5}$ concentrations were $178.4{\pm}152.7{\mu}g/m^3$ (n=37). Five types of indoor $PM_{2.5}$ concentrations have been classified, which were associated with indoor activity. The stove type, fuel types and indoor activities such as cleaning, cooking and opening the stoves were not significantly associated with indoor $PM_{2.5}$ levels. Conclusions: Further study is needed to determine the effect of stove type through 24hours of indoor air quality monitoring.

Health and Environmental Risk Assessment of Pollutants in Pohang (포항지역 오염물질 보건.환경 위해성 평가 -미세먼지의 발생특성 및 농도분포를 중심으로-)

  • Jung, Jong-Hyeon;Choi, Won-Joon;Leem, Heon-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2719-2726
    • /
    • 2010
  • The purpose of this study was to investigate the scientific basic grounds for the assessment of health and environmental diseases resulting from air pollutants in Pohang. For this study, we investigated pollutants, weather characteristics and concentration distribution of fine particles ($PM_10$) yearly and each season, using data from Air Quality Monitoring Stations. The properties of concentration distribution and seasonal fluctuation of $PM_10$ were studied qualitatively and quantitatively using CALPUFF, air dispersion model. The average concentration of $PM_10$ for each season was spring($75.7{\mu}g/m^3$)>summer($56.8{\mu}g/m^3$)>winter($53.6{\mu}g/m^3$)>fall( $52.7{\mu}g/m^3$). In the case of spring, high concentrations appear due to the Asian dust frequently occurring. The contributions of $PM_10$ classified by the types of pollution source in Pohang were point source 62%>mobile source 33%>area source 5%. An important point is that 97% of emissions were produced from the iron manufacture in steel industry. Therefore, it is necessary to control the emission sources of pollutants and to construct an observation system at Pohang steel industrial complex from now on. It’s time to control the risk factors for health and environmental disease to protect the health of resident in Pohang and its neighboring areas.

A Study on the Characteristics of Ion, Carbon, and Elemental Components in PM2.5 at Industrial Complexes in Ansan and Siheung (안산·시흥 산업단지 지역 PM2.5 중 이온, 탄소, 원소성분의 특성 연구)

  • Lee, Hye-Won;Lee, Seung-Hyeon;Jeon, Jeong-In;Lee, Jeong-Il;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.66-74
    • /
    • 2022
  • Background: The health effects of particulate matter (PM2.5) bonded with various harmful chemicals differ based on their composition, so investigating and managing their concentrations and composition is vital for long-term management. As industrial complexes emit considerable quantities of pollutants, higher PM2.5 concentrations and chemical component effects are expected than in other places. Objectives: We investigated the concentration distribution ratios of PM2.5 chemical components to provide basic data to inform future major emissions control and PM2.5 reduction measures in industrial complexes. Methods: We monitored five sites near the Ansan and Siheung industrial complexes from August 2020 to July 2021. Samples were collected and analyzed twice per week in spring/winter and once per week in summer/autumn according to the National Institute of Environmental Research in the Ministry of Environments' Air Pollution Monitoring Network Installation and Operation Guidelines. We investigated and compared composition ratios of 29 ions, carbon, and elemental components in PM2.5. Results: The analysis of PM2.5 components at the five sites revealed that ion components accounted for the greatest total mass at approximately 50% while carbon components and elemental components contributed 23~28% and 8~10%, respectively. Among the ionic components, NO3- occupies the greatest proportion. OC occupies the greatest proportion of the carbon components and sulphur occupies the greatest proportion of elemental components. Conclusions: This study investigated the concentration distribution ratios of PM2.5 chemical components in industrial complexes. We believe these results provide basic chemical component concentration ratio data for establishing future air management policies and plans for the Ansan and Siheung industrial complexes.

Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model (미세먼지 유발 폐기능 손상 동물모델에서 RML의 호흡기 보호 효과)

  • Kim, Soo Hyun;Kim, Min Ju;Shin, Mi-Rae;Roh, Seong-Soo;Kim, Seung Hyung;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • Objective : This study is aimed to evaluate the protective effects of Rehmanniae Radix, Mori Folium, and Liriopie Tuber mixture (RML) on lung injury of Particulate matter less than 10 um in diameter and diesel exhaust particles (PM10D) mice model. Methods : To investigate the anti-inflammatory activity of RML, PM10D was diluted in aluminum hydroxide (Alum) in 7-week-old male mice and induced by Intra-Nazal-Tracheal (INT) injection method. Animal experiments were divided into 5 groups. Nor (normal mice), CTL (PM10D-induced mice with the administration of distilled water), DEXA (PM10D-induced mice with the administration of 3 mg/kg Dexamethasone), RML 100 (PM10D-induced mice treated with RML 100 mg/kg weight), and RML 200 (PM10D-induced mice treated with RML 200 mg/kg body weight). After 11 days administration, mice were sacrificed and inflammation-related immune cells in broncho-alveolar lavage fluid (BALF) were analyzed. Inflammation-related biomarkers were also analyzed in blood and lungs. Lung tissue was observed through histological examination. Results : In the PM10D induced model, the PML showed decreases in CXCL-1 and IL-17A in BALF. Expression of inflammatory cytokines and cough-related mRNA genes was significantly decreased in serum and lung tissue. The mixture treatment of RML significantly improved the immune related cells in the serum. In addition, histological observations showed a tendency to decrease the severity of lung injury. Conclusions : Overall, these results confirmed the respiratory protective effect of the RML mixture in a model of lung injury induced by air pollution (PM10+DEP), suggesting that it is a potential treatment for respiratory damage.