• Title/Summary/Keyword: PLL

Search Result 951, Processing Time 0.025 seconds

A V-I Converter Design for Wide Range PLL (넓은 주파수 영역 동작의 PLL을 위한 V-I 변환기 설계)

  • Hong, Dong-Hee;Lee, Hyun-Seok;Park, Jong-Wook;Sung, Man-Young;Lim, Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.52-58
    • /
    • 2007
  • This paper describes the PLL of TCON(Timing Controller) chip for FPD(Flat Panel Display). The recent TCON requires wide range frequency operation of $8\sim135MHz$ in PLL. In order to be satisfied this requirement the new V-I converter.circuit. The V-I converter of new architecture increased the minimum/maximum current ratio which widens the operation frequency range of VCO's md also guaranteed linearity of VCO's. The proposed PLL circuits in FPD TCON show the measuring performance of loops RMS jitter in the range of $8\sim135MHz$. The designed circuit was fabricated in 1-ploy 3-metal 0.25um TSMC process technology and has a operation range or $8\sim135MHz$ with 2.5V power.

A 1.8 V 0.18-μm 1 GHz CMOS Fast-Lock Phase-Locked Loop using a Frequency-to-Digital Converter

  • Lee, Kwang-Hun;Jang, Young-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • A 1 GHz CMOS fast-lock phase-locked loop (PLL) is proposed to support the quick wake-up time of mobile consumer electronic devices. The proposed fast-lock PLL consists of a conventional charge-pump PLL, a frequency-to-digital converter (FDC) to measure the frequency of the input reference clock, and a digital-to-analog converter (DAC) to generate the initial control voltage of a voltage-controlled oscillator (VCO). The initial control voltage of the VCO is driven toward a reference voltage that is determined by the frequency of the input reference clock in the initial mode. For the speedy measurement of the frequency of the reference clock, an FDC with a parallel architecture is proposed, and its architecture is similar to that of a flash analog-to-digital converter. In addition, the frequency-to-voltage converter used in the FDC is designed simply by utilizing current integrators. The circuits for the proposed fast-lock scheme are disabled in the normal operation mode except in the initial mode to reduce the power consumption. The proposed PLL was fabricated by using a 0.18-${\mu}m$ 1-poly 6-metal complementary metal-oxide semiconductor (CMOS) process with a 1.8 V supply. This PLL multiplies the frequency of the reference clock by 10 and generates the four-phase clock. The simulation results show a reduction of up to 40% in the worstcase PLL lock time over the device operating conditions. The root-mean-square (rms) jitter of the proposed PLL was measured as 2.94 ps at 1 GHz. The area and power consumption of the implemented PLL are $400{\times}450{\mu}m^2$ and 6 mW, respectively.

Design of a 40 GHz CMOS Phase-Locked Loop Frequency Synthesizer Using Wide-Band Injection-Locked Frequency Divider (광대역 주입동기식 주파수 분주기 기반 40 GHz CMOS PLL 주파수 합성기 설계)

  • Nam, Woongtae;Sohn, Jihoon;Shin, Hyunchol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.717-724
    • /
    • 2016
  • This paper presents design of a 40 GHz CMOS PLL frequency synthesizer for a 60 GHz sliding-IF RF transceiver. For stable locking over a wide bandwith for a injection-locked frequency divider, an inductive-peaking technique is employed so that it ensures the PLL can safely lock across the very wide tuning range of the VCO. Also, Injection-locked type LC-buffer with low-phase noise and low-power consumption is added in between the VCO and ILFD so that it can block any undesirable interaction and performance degradation between VCO and ILFD. The PLL is designed in 65 nm CMOS precess. It covers from 37.9 to 45.3 GHz of the output frequency. and its power consumption is 74 mA from 1.2 V power supply.

Performance Evaluations of Four MAF-Based PLL Algorithms for Grid-Synchronization of Three-Phase Grid-Connected PWM Inverters and DGs

  • Han, Yang;Luo, Mingyu;Chen, Changqing;Jiang, Aiting;Zhao, Xin;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1904-1917
    • /
    • 2016
  • The moving average filter (MAF) is widely utilized to improve the disturbance rejection capability of phase-locked loops (PLLs). This is of vital significance for the grid-integration and stable operation of power electronic converters to electric power systems. However, the open-loop bandwidth is drastically reduced after incorporating a MAF into the PLL structure, which makes the dynamic response sluggish. To overcome this shortcoming, some new techniques have recently been proposed to improve the transient response of MAF-based PLLs. In this paper, a comprehensive performance comparison of advanced MAF-based PLL algorithms is presented. This comparison includes HPLL, MPLC-PLL, QT1-PLL, and DMAF-PLL. Various disturbances, such as grid voltage sag, voltage flicker, harmonics distortion, phase-angle and frequency jumps, DC offsets and noise, are considered to experimentally test the dynamic performances of these PLL algorithms. Finally, an improved positive sequence extraction method for a HPLL under the frequency jumps scenario is presented to compensate for the steady-state error caused by non-frequency adaptive DSC, and a satisfactory performance has been achieved.

Consistent and Specific Suppression of Mucin Release from Cultured Hamster Tracheal Surface Epithelial Cells by Poly-L-Lysine

  • Lee, Choong-Jae;Lee, Jae-Heun;Seok, Jeong-Ho;Hur, Gang-Min;Park, Ji-Sun;Bae, So-Hyun;Jang, Hyeon-Seok;Park, Sang-Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.143-147
    • /
    • 2003
  • Poly-L-lysine (PLL) was reported to suppress mucin release from airway goblet cells during 30 min treatment period. In this study, we investigated whether PLL consistently suppresses mucin release from cultured airway goblet cells during 24 h after 30 min treatment and also specifically suppresses the release of mucin without any effects on the other releasable glycoproteins. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3H$-glucosamine for 24 h and chased for 30 min in the presence of varying concentrations of PLL to assess the effects on $^3H$-mucin release and on the total elution profile of the treated culture medium. The total mucin content during 24 h after 30 min treatment of PLL was assesed to investigate the consistency of effects. PLL did not affect the release of the other releasable glycoproteins whose molecular weights were less than mucin, and decreased the total mucin content during 24 h after 30 min treatment. We conclude that PLL can specifically suppress mucin release from cultured airway goblet cells and the suppression on mucin release is consistent. This finding suggests that PLL might be used as a specific airway mucin-regulating agent by directly acting on airway mucin-secreting cells.

A Robust PLL of PCS for Fuel Cell System under Unbalanced Grid Voltages (불평형 계통전압에 강인한 연료전지용 전력변환시스템의 PLL 방법)

  • Kim, Yun-Hyun;Kim, Wang-Rae;Lim, Chang-Jin;Kim, Kwang-Seob;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.103-105
    • /
    • 2008
  • In grid-interconnection system, a fast, robust and precise phase angle detector is most important to grid synchronization and the active power control. The phase angle can be easily estimated by synchronous dq PLL system. On the other hand under unbalanced voltage condition, synchronous dq PLL system has problem that harmonics occur to phase angle or magnitude of grid voltage because of the effect of the negative sequence components. So, To eliminate the negative sequence components, the PLL method using APF (All Pass Filter) in a stationery reference frame to extract positive sequence components under unbalanced voltage condition is researched. In this paper, we propose a new PLL method with decoupling network using APF in a synchronous reference frame to extract the positive sequence components of the grid voltage under unbalanced grid. The cut-off frequency of APF in a synchronous reference frame can be set to twice of the fundamental frequency comparing with that of APF in a stationery reference frame which is the fundamental frequency. The proposed PLL strategy can detect the phase angle quickly and accurately under unbalanced gird voltages. Simulation and experimental results are presented to verify the proposed strategy under different kind of voltage dips.

  • PDF

A Study on Design and Performance Evaluation of the Frequency Snthesizer Using the DDS in the Transmitter of the FFH/BFSK System (FFH/BFSK 시스템 송신부에서 DDS를 이용한 주파수합성기 설계 및 성능평가에 관한 연구)

  • 이두석;유형렬;정지원;조형래;김기문
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.161-166
    • /
    • 1999
  • The global trends of mobile communication system is moving toward digitizing, high-speed and large-capacity. Also, to utilize the limited frequency-resource efficiently, spread spectrum system is a mainstream. In this study we are concerning with the fast frequency-hopping system. Instead of the PLL with many problems such as phase-noise, we used the DDS is popular in these days minimizes the disadvantage of PLL. In the case the FFH system is designed using the PLL, it is difficult to be satisfied of the design conditions such as RF badwidth and the settling time of PLL, and it has limitation because of complex circuit by using the balanced modulator. In this study, we evaluated the performance in order to design the FFH system using the DDS. The system that has the improvement of error rate, 1Mhps hopping rate and 5MHz RF bandwidth is designed and evaluated.

  • PDF

A Study on Phase Error of Orthogonal MC DS-CDMA Using Hybrid SC/MRC-2/4 (하이브리드 SC/MRC-2/4기법을 적용한 직교 MC DS-CDMA 시스템의 위상 에러에 관한 연구)

  • Kim, Won-Sbu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1734-1741
    • /
    • 2007
  • In this paper, the Hybrid SC/MRC-2/4 method in which bit synchronization and phase synchronization were not required was applied to the orthogonal MC DS-CDMA system in which each normalized subcarrier interval and processing gain had the same value, respectively, and the direct sequence spread code of each subcarrier was orthogonal. In the broadband wireless system in which multi-carrier transmission was used, a Doppler frequency shift occurred, which was caused by the difference between the highest subcarrier frequency md the lowest subcarrier frequency. In order to complement phase error caused by the shift, the orthogonal MC DS-CDMA system was analyzed so that the receiving signal could be perfectly synchronized by adjusting the PLL gain suitable for the entire system. As a result of simulations, as the PLL gain was increased, the change in the intervals was close to the case of perfect synchronization however, it became less when the PLL gain reached more than a certain value. Therefore, by selecting a proper PLL gain suitable for the system the orthogonal MC DS-CDMA can be designed in which the Hybrid SC/MRC method is applied.

Design of Fractional-N Digital PLL for IoT Application (IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계)

  • Kim, Shinwoong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.800-804
    • /
    • 2019
  • This paper presents a dual-loop sub-sampling digital PLL for a 2.4 GHz IoT applications. The PLL initially performs a divider-based coarse lock and switches to a divider-less fine sub-sampling lock. It achieves a low in-band phase noise performance by enabling the use of a high resolution time-to-digital converter (TDC) and a digital-to-time converter (DTC) in a selected timing range. To remove the difference between the phase offsets of the coarse and fine loops, a phase offset calibration scheme is proposed. The phase offset of the fine loop is estimated during the coarse lock and reflected in the coarse lock process, resulting in a smooth transition to the fine lock with a stable fast settling. The proposed digital PLL is designed by SystemVerilog modeling and Verilog-HDL and fully verified with simulations.

An Ultra Small Size Phase Locked Loop with a Signal Sensing Circuit (신호감지회로를 가진 극소형 위상고정루프)

  • Park, Kyung-Seok;Choi, Young-Shig
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.479-486
    • /
    • 2021
  • In this paper, an ultra small phase locked loop (PLL) with a single capacitor loop filter has been proposed by adding a signal sensing circuit (SSC). In order to extremely reduce the size of the PLL, the passive element loop filter, which occupies the largest area, is designed with a very small single capacitor (2pF). The proposed PLL is designed to operate stably by the output of the internal negative feedback loop including the SSC acting as a negative feedback to the output of the single capacitor loop filter of the external negative feedback loop. The SSC that detects the PLL output signal change reduces the excess phase shift of the PLL output frequency by adjusting the capacitance charge of the loop filter. Although the proposed structure has a capacitor that is 1/78 smaller than that of the existing structure, the jitter size differs by about 10%. The PLL is designed using a 1.8V 180nm CMOS process and the Spice simulation results show that it works stably.