• Title/Summary/Keyword: PLGA nanospheres

Search Result 5, Processing Time 0.02 seconds

Conjugation of vascular endothelial growth factor to poly lactic-co-glycolic acid nanospheres enhances differentiation of embryonic stem cells to lymphatic endothelial cells

  • Yoo, Hyunjin;Choi, Dongyoon;Choi, Youngsok
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.533-538
    • /
    • 2021
  • Objective: Pluripotent stem cell-derived lymphatic endothelial cells (LECs) show great promise in their therapeutic application in the field of regenerative medicine related to lymphatic vessels. We tested the approach of forced differentiation of mouse embryonal stem cells into LECs using biodegradable poly lactic-co-glycolic acid (PLGA) nanospheres in conjugation with growth factors (vascular endothelial growth factors [VEGF-A and VEGF-C]). Methods: We evaluated the practical use of heparin-conjugated PLGA nanoparticles (molecular weight ~15,000) in conjugation with VEGF-A/C, embryoid body (EB) formation, and LEC differentiation using immunofluorescence staining followed by quantification and quantitative real-time polymerase chain reaction analysis. Results: We showed that formation and differentiation of EB with VEGF-A/C-conjugated PLGA nanospheres, compared to direct supplementation of VEGF-A/C to the EB differentiation media, greatly improved yield of LYVE1(+) LECs. Our analyses revealed that the enhanced potential of LEC differentiation using VEGF-A/C-conjugated PLGA nanospheres was mediated by elevation of expression of the genes that are important for lymphatic vessel formation. Conclusion: Together, we not only established an improved protocol for LEC differentiation using PLGA nanospheres but also provided a platform technology for the mechanistic study of LEC development in mammals.

Preparation and Characterization of Pioglitazone Loaded PLGA Nanospheres for the Treatment of Type 2 Diabetes (제2형 당뇨병 치료제인 Pioglitazone을 봉입하기 위한 PLGA 나노입자 제조 및 분석)

  • Woo, Hyun-Ju;Kim, Jin-Soo;Kim, Jun-Gi;Nurunnabi, Md.;Huh, Kang-Moo;Cho, Kwang-Jae;Lee, Yong-Kyu
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.527-533
    • /
    • 2010
  • The pioglitazone loaded poly(lactide-co-glycolide)(PLGA) nanospheres were prepared by emulsion-evaporation method and optimized for particle size and entrapment efficiency. The optimized particles were 125~170 nm in size with narrow size distribution and showed above 85% entrapment efficiency at 30% of pioglitazone loading when prepared with 3% w/v of poly(vinyl alcohol) (PVA) as a surfactant. These particulate carriers exhibited a controlled in vitro release of pioglitazone for 40 days at a nearly constant rate. The pioglitazone loaded PLGA nanospheres were not only effective to reduce the blood sugar level of diabetic rats but also non-toxic for the animal body, in particular for sensitive organs like kidney, liver, heart, lung and spleen. These results indicate that PLGA nanospheres have a great potential for oral delivery of pioglitazone.

Suspension culture of anchorage-dependent cells in serum-free medium with biodegradable polymer nanospheres

  • Ryu, Ju-Hee;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.171-173
    • /
    • 2003
  • Suspension culture in serum-free medium is important for the efficient large-scale culture of anchorage-dependent cells that are utilized to produce therapeutic recombinant protein(e.g., insulin, antibody, vaccine) and virus vector for therapeutic gene transfer. We developed a novel method for the suspension culture of anchorage-dependent animal cells in serum-free medium using biodegradable polymer nanospheres in this study. Poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres (433nm in average diameter) were used to the culture of human embryonic kidney 293 cells in serum-free medium in stirred suspension bioreactors. The use of PLGA nanospheres promoted the aggregate formation and cell growth (3.8-fold versus 1.8-fold growth), compared to culture without nanospheres. Adaptation of the anchorage-dependent cells to suspension culture or serum-free medium is time-consuming and costly. In contrast, the culture method developed in our study does not require the adaptation process. This method may be useful for the large-scale suspension culture of various types of anchorage-dependent animal cells in serum-free medium.

  • PDF

Preparation of Double Layered Nanosphere Using Dextran and Poly(L-lactide- co-glycolide) (덱스트란과 락타이드글리콜라이드 공중합체를 이용한 이중층 나노미립구 제조)

  • Hong Keum Duck;Ahn Yong San;Go Jong Tae;Kim Moon Suk;Yuk Soon Hong;Shin Hyung Sik;Rhee John M;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.260-265
    • /
    • 2005
  • The initial burst of drug release is an important role in the controlled delivery of drug having hish toxicity and narrow therapeutic ranges. Nanosphere composed of monolayer could not achieve precisely controlled drug release because of the initial burst of drug on surface. In this study, double layered nanosphere was prepared for sustained drug delivery without initial burst. Double layered nanosphere composed of dextran and PLGA was fabricated by using conventional W/O/W double emulsion method. To control surface tension on the outer layer of nanospheres, PVA was used as a surfactant. Release behavior of dextran as model drug was observed as the $3{\times}1$mm wafers formed by compression mould in the deionized water for 7 days. Double layered nanosphere has sustained release behavior, in contast to single layered nanospheres. such as mechanical mixture and dextran nanospheres. Especially, nanosphere containing PVA $0.2\%$ has shown nearly the zero-order release profile. As a result of this study, double layered nanospheres has more sustained release profile of drug without the initial burst and the release behavior of dexoan on tile double layered nanospheres was controlled by the contents of PVA as a surfactant.

Upregulation of Mir-34a in AGS Gastric Cancer Cells by a PLGA-PEG-PLGA Chrysin Nano Formulation

  • Mohammadian, Farideh;Abhari, Alireza;Dariushnejad, Hassan;Zarghami, Faraz;Nikanfar, Alireza;Pilehvar-Soltanahmadi, Yones;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8259-8263
    • /
    • 2016
  • Background: Nano-therapy has the potential to revolutionize cancer therapy. Chrysin, a natural flavonoid, was recently recognized as having important biological roles in chemical defenses and nitrogen fixation, with anti-inflammatory and anti-oxidant effects but the poor water solubility of flavonoids limitstheir bioavailability and biomedical applications. Objective: Chrysin loaded PLGA-PEG-PLGA was assessed for improvement of solubility, drug tolerance and adverse effects and accumulation in a gastric cancer cell line (AGS). Materials and Methods: Chrysin loaded PLGA-PEG copolymers were prepared using the double emulsion method (W/O/W). The morphology and size distributions of the prepared PLGA-PEG nanospheres were investigated by 1H NMR, FT-IR and SEM. The in vitro cytotoxicity of pure and nano-chrysin was tested by MTT assay and miR-34a was measured by real-time PCR. Results: 1H NMR, FT-IR and SEM confirmed the PLGA-PEG structure and chrysin loaded on nanoparticles. The MTT results for different concentrations of chrysin at different times for the treatment of AGS cell line showed IC50 values of 68.2, 56.2 and $42.3{\mu}M$ and 58.2, 44.2, $36.8{\mu}M$ after 24, 48, and 72 hours of treatment, respectively for chrysin itslef and chrysin-loaded nanoparticles. The results of real time PCR showed that expression of miR-34a was upregulated to a greater extent via nano chrysin rather than free chrysin. Conclusions: Our study demonstrates chrysin loaded PLGA-PEG promises a natural and efficient system for anticancer drug delivery to fight gastric cancer.