Browse > Article

Preparation of Double Layered Nanosphere Using Dextran and Poly(L-lactide- co-glycolide)  

Hong Keum Duck (Department of Polymer Nano Science and Technoloy, Chonbuk National University)
Ahn Yong San (Department of Polymer Nano Science and Technoloy, Chonbuk National University)
Go Jong Tae (Department of Polymer Nano Science and Technoloy, Chonbuk National University)
Kim Moon Suk (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Yuk Soon Hong (Department of Polymer Science and Engineering, Hannam University)
Shin Hyung Sik (Department of Chemical Engineering, Chonbuk National University)
Rhee John M (Department of Polymer Nano Science and Technoloy, Chonbuk National University)
Khang Gilson (Department of Polymer Nano Science and Technoloy, Chonbuk National University)
Lee Hai Bang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Publication Information
Polymer(Korea) / v.29, no.3, 2005 , pp. 260-265 More about this Journal
Abstract
The initial burst of drug release is an important role in the controlled delivery of drug having hish toxicity and narrow therapeutic ranges. Nanosphere composed of monolayer could not achieve precisely controlled drug release because of the initial burst of drug on surface. In this study, double layered nanosphere was prepared for sustained drug delivery without initial burst. Double layered nanosphere composed of dextran and PLGA was fabricated by using conventional W/O/W double emulsion method. To control surface tension on the outer layer of nanospheres, PVA was used as a surfactant. Release behavior of dextran as model drug was observed as the $3{\times}1$mm wafers formed by compression mould in the deionized water for 7 days. Double layered nanosphere has sustained release behavior, in contast to single layered nanospheres. such as mechanical mixture and dextran nanospheres. Especially, nanosphere containing PVA $0.2\%$ has shown nearly the zero-order release profile. As a result of this study, double layered nanospheres has more sustained release profile of drug without the initial burst and the release behavior of dexoan on tile double layered nanospheres was controlled by the contents of PVA as a surfactant.
Keywords
double layered nanosphere; dextran; PLGA; PVA; sustained release;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 J. K. Jeong, G. Khang, J. M. Rhee, H. C. Shin, and H. B. Lee, J. Kor. Pharm. Sci., 30, 235 (2000)
2 H. J. Kil, S. H. Cho, G. Khang, S. Y. Jeung, K. S. Seo, B. Y. Yoon, B. K. Kang, and H. B. Lee, J. Kor. Pharm. Sci., 33, 121 (2003)
3 L. A. Hergert and G. M. Escandar, Talanta, 60, 235 (2003)
4 H. S. Kim, S. K. Lee, S. U. Choi, H. S. Park, H. J. Jeon, and Y. W. Choi, J. Kor. Pharm. Sci., 32, 27 (2002)
5 Y. Y. Yang, M. Shi, S. H. Goh, S. M. Moochhala, and J. Heller, J. Control. Rel., 88, 201 (2003)
6 Y. Y. Yang, T. S. Chung, X. L. Bai, and W. K. Chan, Chem. Eng. Sci., 55, 2223 (2000)
7 C. Berkland, E. Pollauf, D. W. Pack, and K. Kim, J. Control. Rel., 96, 101 (2004)
8 K. J. Leach and E. Mathiowitz, Biomaterials, 19, 1973 (1998)
9 K. J. Leach, S. Takahashi, and E. Mathiowitz, Biomaterials, 19, 1981 (1998)
10 J. C. Cho, G. Khang, H. S. Choi, J. M. Rhee, and H. B. Lee, Polymer(Korea), 24, 728 (2000)
11 H. H. Chia, Y. Y. Yang, T. S. Chung, S. Y. Ng, and 1. Heller, J. Control. Rel., 75, 11 (2001)   DOI   ScienceOn
12 T. H. Kim and T. G. Park, Int. J. Pharm., 271, 207 (2004)
13 H. K. Kim and T. G. Park, Biotechnol. Bioeng., 65, 659 (1999)
14 K. J. Pekarek, J. S. Jacob, and E. Mathiowitz, Adv. Mater., 6, 684 (1994)
15 K. Leach, K. Noh, and E. Mathiowitz, J. Microencapsul., 16, 153 (1999)
16 G. Khang, J. K. Jeong, J. M. Rhee, J. S. Lee, and H. B. Lee, Macro. Chem. Sym., 14, 123 (2001)
17 M. E. Yue, T. F. Jiang, and Y. P. Shi, Talanta, 62, 695 (2004)
18 J. S. Lee, J. H. Shin, J. K. Jeong, J. M. Rhee, H. B. Lee, and G. Khang, Polymer(Korea), 27, 9 (2003)
19 S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer, Pharm. Res., 8, 713 (1991)
20 C. U. Nielsen, R. Andersen, B. Brodin, S. Frokiaer, and B. Steffansen, J. Control. Rel., 73, 21 (2001)   DOI   ScienceOn
21 S. Y. Ng, H. R. Shen, E. Lopez, Y. Zherebin, J. Barr, E. Schacht, and J. Heller, J. Control. Rel., 65, 367 (2000)
22 L. M. Prince, J. Colloid Interface Sci., 23, 165 (1967)
23 J. K. Jeong, G. Khang, J. M. Rhee, H. C. Shin, and H. B. Lee, J. Kor. Pharm. Sci., 30, 21 (2000)
24 M. K. Lee, L. Choi, M. H. Kim, and C. K. Kim, Int. J. Pharm., 191, 87 (1997)
25 M. Shi, Y. Y. Yang, C. S. Chaw, S. H. Goh, and S. M. Moochhala, J. Control. Rel., 89, 167 (2003)
26 G. Crotts, H. Sah, and T. G. Park, J. Control. Rel., 47, 101 (1997)
27 T. Urata, K. Arimori, and M. Nakano, J. Control. Rel., 58, 133 (1999)
28 K. J. Pekarek, J. S. Jacob, and E. Mathiowitz, Nature, 367, 258 (1994)
29 Y. Y. Yang, H. H. Chia, and T. S. Chung, J. Control. Rel., 69, 81 (2000)
30 N. A. Rahman and E. Mathiowitz, J. Control. Rel., 94, 163 (2004)
31 X. Li, X. Deng, and Z. Huang, Pharm. Res., 18, 117 (2001)   DOI   ScienceOn
32 T. H. Lee, J. Wang, and C. H. Wang, J. Control. Rel., 83, 437 (2002)
33 K. J. Pekarek, M. J. Dyrud, K. Ferrer, Y. S. Jong, and E. Mathiowitz, J. Control. Rel., 40, 169 (1996)