• Title/Summary/Keyword: PLFA

Search Result 37, Processing Time 0.04 seconds

Effects of transgenic watermelon with CGMMV resistance on the diversity of soil microbial communities using PLFA

  • Yi, Hoon-Bok;Kim, Chang-Gi
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.225-236
    • /
    • 2010
  • We compared the composition of phospholipid fatty acids (PLFA) to assess the microbial community structure in the soil and rhizosphere community of non-transgenic watermelons and transgenic watermelons in Miryang farmlands in Korea during the spring and summer of 2005. The PLFA data were seasonally examined for the number of PLFA to determine whether there is any difference in the microbial community in soils from two types of watermelons, non-transgenic and transgenic. We identified 78 PLFAs from the rhizosphere samples of the two types of watermelons. We found eight different PLFAs for the type of plants and sixteen PLFAs for the interaction of plant type and season. The PLFA data were analyzed by analysis of variance separated by plant type (P<0.0085), season (P<0.0154), and the plant type${\times}$season interaction (P<0.1595). Non-parametric multidimensional scaling (NMS showed a small apparent difference but multi-response permutation procedures (MRPP) confirmed that there was no difference in microbial community structure for soils of both plant types. Conclusively, there was no significant adverse effect of transgenic watermelon on bacterial and fungal relative abundance as measured by PLFA. We could reject our hypothesis that there might be an adverse effect from transgenic watermelon with our statistical results. Therefore, we can suggest the use of this PLFA methodology to examine the adverse effects of transgenic plants on the soil microbial community.

Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil (온도가 유기물의 질소무기화와 미생물 군집구조에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Kim, Seong-Cheol;Moon, Doo-Gyung;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community in non-volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles showed that was different significantly according to incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. Principal component analysis using PLFA profiles showed that microbial community structures were composed differently by temperature factor at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$). In conclusion, Soil microbial community structure showed relative sensitivity and seasonal changes as affected by temperature and organic matter type.

Comparison of Biological Characteristics on the Organic Waste-treated Lysimeter Soil by RFLP, PLFA, and CLSU (RFLP, PLFA, CLSU를 이용한 폐기물연용토양의 토양미생물 특성 평가 비교)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Lee, Kang-Hyo;Kwon, Sun-Ik;Kong, Won-sik;Suh, Jang-sun;Sung, Jae-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.415-418
    • /
    • 2008
  • The application of sludge wastes into agricultural fields has been increasing annually in Korea. In particular, sewage sludge application has been widely accepted in decades. Sewage sludge application aid in the recycling of essential nutrients and act as a source of organic matter improving the structure and water-holding properties of the soil. The efficient use of sludge wastes, however, requires an individual assessment of waste products. This study assessed the biological characteristics of organic waste-treated lysimeter soils and develop its indicator to assess the soil health of organic waste-treated lysimeter soils. Several analytical techniques more recently developed such as restriction fragment length polymorphism (RFLP), phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for detailed analyses of soil microbial communities. PLFA and RFLP was, therefore, used in the study to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. PLFA, RFLP and CLSU have been utilized to assess microbial characteristics of the lysimeter soils with four different sludge wastes for eight consecutive years. Each of these methods was analyzed for a different aspect of soil microbial characteristics. The study would disclose those methods yielded highly reproductive results for each soil and allow distinguishing the soils based on the structures of specific geneand PLFA-pools more than CLSU fingerprints. PLFA methods, especially, revealed the same relative similarities of the treated soils based on cluster analysis of the biological characteristics. Pig manure compost-treated soil, however, was only the same relative resemblance among the three methods. These results indicated that PLFA easily assessed the biological soil characterization.

Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil (온도가 화산회토양의 질소무기화와 미생물군집이동에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Koh, Sang-Wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.467-474
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community structure in volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles were different significantly caused by incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. But cy19:0/$18:1{\omega}7c$ ratio increased both FWC and PMC treatment. Principal component analysis using PLFA profiles showed that microbial community structure made up clearly at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$) by temperature factor. As incubating time passed, microbial community structure shifted gradually.

Microbial Community Structure of Paddy Soil Under Long-term Fertilizer Treatment Using Phospholipid Fatty Acid (PLFA) Analysis

  • Daquiado, Aileen Rose;Kim, Tae Young;Lee, Yong Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.474-481
    • /
    • 2013
  • Understanding the microbial community structure of agricultural soils is important for better soil management in order to improve soil quality. Phospholipid fatty acid analysis has been popularly used in determining the microbial community structure in different ecosystems. The microbial community structure of paddy soil under long-term fertilizer treatments was investigated after 45 years using PLFA analysis. Treatments were control (no fertilization, Con), compost (COM), NPK, NPK+compost (NPKC), PK, NK, and NP. Soil chemical properties were mainly affected by the addition of compost and inorganic P fertilizer. Total nitrogen and organic matter contents were significantly higher in treatments with compost while available $P_2O_5$ and exchangeable calcium were significantly higher in treatments with added inorganic P fertilizer. It was found that microbial communities were responsive to the different fertilizer treatments. PLFA results showed that the soils were dominated by gram-negative bacteria, followed by the actinomycetes, then gram-positive bacteria, and fungi. Principal component analysis of the soil chemical properties and PLFA composition proved to be a more reliable tool because it was more responsive to the changes in soil chemical properties.

Effects of Cover Plants on Soil Biota: A Study in an Apple Orchard (사과원에서 피복식물이 토양생물상에 미치는 영향)

  • Eo, Jin-U;Kang, Seok-Beom;Park, Kee-Choon;Han, Kyoung-Suk;Yi, Young-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.287-292
    • /
    • 2010
  • We aimed to investigate the responses of soil organisms to cover plants and to provide information for the selection of proper plant species. We studied the effects of 7 cover plants, including rye, oat, rattail fescue, Chinese milk vetch, red clover, crimson clover, and hairy vetch, on soil organisms in an apple orchard. An increase in the microbial phospholipid fatty acids (PLFA) and in the number of nematodes and microarthropods in the soil under the cover plants reflects elevated activities of soil organisms. A decrease in the level of some marker PLFA, which is an indicator of environmental stress, suggests that cover plants provide favorable environments for soil organisms. The population of fungi and animals that feed on fungi increased in the soil surface under red clover. The population density of nematodes and mites increased in the soil surface under rattail fescue, and that of mites and omnivorous nematodes increased in the soil surface under Chinese milk vetch. The level of microbial PLFA in the soil surfaces under the tested cover plants was higher than that under clean culture system. These results suggest that proper selection of the cover plants can facilitate the creation of favorable environments for soil organisms.

Distribution of Microflora and Mesofauna in the Forest Soils of Gwangneung Experimental Forest (광릉시험림 산림토양의 미생물상 및 중형동물상 분포)

  • Eo, Jinu;Park, Byung Bae;Park, Kee-choon;Chun, Jung Wha
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.681-686
    • /
    • 2011
  • The aim of this study was to investigate the distribution of soil biota across forest types and soil depths in Gwangneung Experimental Forest. We selected 5 sites, which are 3 deciduous- and 2 coniferous forests. The abundance of microflora in these areas was analyzed by the phospholipid fatty acid (PLFA) indicators, and the density of mesofauna was measured by the abundance of nematodes and microarthropods. The abundance of soil microflora was higher in the A layer than in the B layer based on the PLFA indicators, but there were no differences between deciduous and coniferous forests. Average density of nematodes was higher in the A horizon than in the B horizon. The density of fungivorous nematodes was higher in the deciduous forests. Mean densities of Collembola and Oribatida were 44% and 42% of microarthropods in soil samples, respectively. The results of microbial PLFA indicators were significantly correlated with the density of their consumers, which reflected that the food web in fungi- and bacteria-based soil developed in this forests. This study suggested that the distribution of soil organisms largely separated by soil depths and was slightly affected by the forest type in the Gwangneung Experimental Forest.

Effect of Temperature on Soil Microbial Biomass, Enzyme Activities, and PLFA content during Incubation Period of Soil Treated with Organic Materials (유기물원 항온배양 온도가 토양미생물체량과 효소활성 및 PLFA함량에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Chun, Seung-Joung;Kim, Chun-Hwan;Choi, Kyung-San;Hyun, Hae-Nam;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.500-512
    • /
    • 2009
  • This study was carried out to evaluate the effect of temperature on soil microbial biomass, enzyme activities, and PLFA content in the volcanic(VAS) and the non-volcanic ash soil(NVAS). The soils were treated with organic materials such as organic fertilizer pelleted(OFPL), organic fertilizer powdered(OFPD), pig manure compost(PMC), and food waste compost(FWC). Two grams of organic materials were well mixed with 30g of dried volcanic and non-volcanic ash soil(< 2 mm) with 50% of soil moisture content. And the soils were incubated at 10, 20, $30^{\circ}C$ in incubator. Soils were analysed on the incubation times as followed; soil pH, total nitrogen, organic matter(at 75, 150, 270 days), microbial biomass C and PLFA (at 75, 270 days), microbial biomass N and soil enzyme(at 150, 270 days). pH values of soils treated with PMC and FWC had no changes on soil type, and incubation temperature. However, the pH was increased with temperature in the soils treated with OFPL. The changes in NVAS was higher than in VAS. Soil microbial biomass C content were high in the condition of high temperature and organic fertilizers treatment in VAS. But the contents were gradually decreased with incubation period in both NVAS and VAS. Soil microbial biomass N was high in NVAS treated with organic fertilizers and in VBS treated with PMC and FWC. PLFA content was higher in NVBS than in VBS at 75 days but showed high in VBS at 270 days. Urease activity of NVBS treated with OFPL showed $10^{\circ}C$ (75.0)> $20^{\circ}C$ (16.3)>$30^{\circ}C$ ($4.6ug\;NH{_4-}N\;g^{-1}\;2h^{-1}$) at 150 days. It were decreased gradually high temperature and time passes. And it showed high at $10^{\circ}C$ in VBS. Glucosidase activity was higher in NVBS than in VBS. Correlation coefficient of between soil microbial biomass C and microbial activity indicators showed that PLFA was high significantly at $r^2=0.91$ in NVBS and ${\beta}-glucosidase$ was $r^2=0.83$ in VBS. Soil microbial activities showed differences in the relative sensitivities of soil type and soil temperature.

Responses of Soil Chemical Properties and Microbiota to Elevated Temperature under Flooded Conditions (상승온도에 의한 담수토양의 미생물상 및 화학성 변화)

  • Eo, Jinu;Hong, Seung-Chang;Kim, Myung-Hyun;Choi, Soon-Kun;Kim, Min-Kyeong;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.32-38
    • /
    • 2016
  • BACKGROUND: Our study aims to investigate the impact of temperature on the abundance and structure of soil microbial community in a temperature gradient tunnel.METHODS AND RESULTS: To investigate the interaction between temperature and input of C and N, rice straw and urea were applied to the study plots, respectively. We also studied the impact of plants by comparing plots cultivated with rice and unplanted plots. Soil microbial response was measured using the phospholipid fatty acid (PLFA) analysis. Soil chemical properties, including pH and ammonia and phosphate concentrations were influenced by warming and material addition. Microbial PLFA was partially influenced by material inputs, and actinomycetes PLFA was decreased by warming. In cultivated rice plots, an increase in the carbon to nitrogen ratio illustrated the effect of plant on microbiota caused by carbon addition through the root residues. Results from the principal component analysis of PLFA data showed that warmed and control plots applied with rice straw could be separated by principal component analysis.CONCLUSION: Our results suggest that plant influence both the microbial community structure and abundance, and temperature change has a minimal impact on soil microorganisms in flooded soil.

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field (시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Kim, Yeong-Suk;Kwon, Oh-Hoon;Kwon, Tae-Ryong;Park, Sang-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.