DOI QR코드

DOI QR Code

Distribution of Microflora and Mesofauna in the Forest Soils of Gwangneung Experimental Forest

광릉시험림 산림토양의 미생물상 및 중형동물상 분포

  • Eo, Jinu (Department of Herbal Crop Research, Rural Development Administration) ;
  • Park, Byung Bae (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Park, Kee-choon (Department of Herbal Crop Research, Rural Development Administration) ;
  • Chun, Jung Wha (Division of Forest Ecology, Korea Forest Research Institute)
  • 어진우 (농촌진흥청 국립원예특작과학원) ;
  • 박병배 (국립산림과학원 산림생태연구과) ;
  • 박기춘 (농촌진흥청 국립원예특작과학원) ;
  • 천정화 (국립산림과학원 산림생태연구과)
  • Received : 2011.08.02
  • Accepted : 2011.09.06
  • Published : 2011.12.31

Abstract

The aim of this study was to investigate the distribution of soil biota across forest types and soil depths in Gwangneung Experimental Forest. We selected 5 sites, which are 3 deciduous- and 2 coniferous forests. The abundance of microflora in these areas was analyzed by the phospholipid fatty acid (PLFA) indicators, and the density of mesofauna was measured by the abundance of nematodes and microarthropods. The abundance of soil microflora was higher in the A layer than in the B layer based on the PLFA indicators, but there were no differences between deciduous and coniferous forests. Average density of nematodes was higher in the A horizon than in the B horizon. The density of fungivorous nematodes was higher in the deciduous forests. Mean densities of Collembola and Oribatida were 44% and 42% of microarthropods in soil samples, respectively. The results of microbial PLFA indicators were significantly correlated with the density of their consumers, which reflected that the food web in fungi- and bacteria-based soil developed in this forests. This study suggested that the distribution of soil organisms largely separated by soil depths and was slightly affected by the forest type in the Gwangneung Experimental Forest.

본 연구 목적은 광릉시험림 지역의 침엽수림과 활엽수림에서 토양 깊이가 미생물상과 중형동물상 분포에 미치는 영향을 구명하는 것이다. 토양 미생물상은 인지질지방산(PLFA) 지표를 이용하여 그 밀도정도를 분석하였고, 중형동물상은 선충과 미소절지동물의 밀도를 조사하였다. 미생물 PLFA지표는 B층보다 A층에서 높았고, 산림형에 따른 차이는 적었다. 선충 밀도도 A층에서 높았으며, 곰팡이섭식성 선충의 밀도는 침염수림 토양보다 활엽수림 토양에서 높게 나타났다. 미소절지동물 중에서 톡토기와 날개응애의 평균밀도는 전체 미소절지동물 밀도의 44%와 42%를 각각 보였다. 세균과 곰팡이를 나타내는 PLFA 지표가 이들을 섭식하는 중형동물과 유의한 양의 상관관계가 있었으며, 이것은 이 지역 토양에서 세균과 곰팡이를 중심으로 한 먹이망 형성이 이들의 분포에 영향을 준다는 것을 나타낸다. 이러한 결과는 광릉시험림의 토양생물 분포는 주로 토양의 깊이에 영향을 받으며, 산림형은 부분적인 영향을 주고 있음을 알 수 있었다.

Keywords

References

  1. 박홍현, 정철의 이준호, 이범영. 1996. 남산과 광릉의 토양 미소절지동물에 관한 연구. 한국토양동물학회지 1(1):37-47.
  2. 배윤환. 2001. 남산과 광릉지역의 잣나무림에서 낙엽분해과정에 관련된 날개응애 군집분석. 한국토양동물학회지 6(1-2): 25-31.
  3. 배윤환, 이준호. 1997. 남산과 광릉 활엽수림에서 낙엽분해에 관여하는 토양무척추동물군집에 관한 연구. 한국토양동물학회지 2(2): 83-91.
  4. 배윤환, 이준호. 1999. 남산과 광릉수목원의 잣나무림에서 낙엽분해과정에 관련된 토양미소절지동물군집. 한국토양동물학회지 4(2): 75-80.
  5. 이경재, 조재창, 이봉주, 이도석. 1990. 광릉 산림의 식물군집구조(1). 한국임학회지 79(2): 173-186.
  6. 정철의, 이준호, 배윤환, 최성식. 1998. 남산과 광릉 활엽수림지역의 날개응애류(Acari: Oribatida) 종 구성. 한국토양동물학회지 3(2): 91-105.
  7. Chun, J.H., Lim, J.H. and Lee, D.K. 2007. Biomass estimation of Gwangneung catchment area with landsat ETM+ image. Journal of Korean Forest Society 96(5): 591-601.
  8. Cole, L., Dromph, K.M., Boaglio, V. and Bardgett, R.D. 2004. Effect of density and species richness of soil mesofauna on nutrient mineralization and plant growth. Biology and Fertility of Soils 39: 337-343.
  9. Eisenhauer, N., Yee, K., Johnson, E.A., Maraun, M., Parkinson, D., Straube, D. and Scheu, S. 2011. Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest. Soil Biology and Biochemistry 43: 462-465. https://doi.org/10.1016/j.soilbio.2010.10.018
  10. Fisk, M.C., Fahey, T.J. and Groffman, P.M. 2010. Carbon resources, soil organisms, and nitrogen availability: Landscape patterns in a northern hardwood forest. Forest Ecology and Management 260: 1175-1183. https://doi.org/10.1016/j.foreco.2010.07.009
  11. Hanel, L. 2008. Nematode assemblages indicate soil restoration on colliery spoils afforested by planting different tree species and by natural succession. Applied Soil Ecology 40: 86-99. https://doi.org/10.1016/j.apsoil.2008.03.007
  12. Hanel, L. 2010. An outline of soil nematode succession on abandoned fields in South Bohemia. Applied Soil Ecology 46: 355-371. https://doi.org/10.1016/j.apsoil.2010.10.005
  13. Heneghan, L., Salmore, A. and Crossley, D.A. 2004. Recovery of decomposition and soil microarthropod communities in an Appalanchian watershed two decades after a clearcut. Forest Ecology and Management 189: 353-362. https://doi.org/10.1016/j.foreco.2003.09.002
  14. Jung, C., Lee, J.H. and Choi, S.S. 2002. Potential of using oribatid mites (Acari: Oribatida) as biological indicators of forest soil acidification. Korean Journal of Agricultural and Forest Meteorology 4(4): 213-218.
  15. Kaur, A., Chaudhary, A., Kaur, A., Choudhary, R. and Kaushik, R. 2005. Phospholipid fatty acid - A bioindicator of environment monitoring and assessment in soil ecosystem. Current Science 89: 1103-1112.
  16. Keith, A.M., Brooker, R.W., Osler, G.H.R., Chapman, S.J., Burslem, D.F.R.P. and Van der Wal, R. 2009. Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biology and Biochemistry 41: 1060-1065. https://doi.org/10.1016/j.soilbio.2009.02.009
  17. Lee, K.J., Miller, O.K. and Kim, Y.S. 1987. Distribution and diversity of saprophytic, mycorrhizal and parasitic higher fungi in Kwangnung experiment forest in Korea. Journal of Korean Forestry Society 76: 376-389.
  18. Li, W.H., Zhang, C.B., Jiang, H.B., Xin, G.R. and Yang, Z.Y. 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK, Plant and Soil 281: 309-324. https://doi.org/10.1007/s11104-005-9641-3
  19. Lim, J.H., Shin, J.H., Jin, G.Z., Chun, J.H. and Oh, J.S. 2003. Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2): 101-109.
  20. Loranger-Merciris, G., Imbert, D., Bernhard-Reversat, F., Ponge, J. and Lavelle, P. 2007. Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antillers): influence of soil type and dominant tree species. Biology and Fertility of Soils 44: 269-276. https://doi.org/10.1007/s00374-007-0199-5
  21. Marschner, P., Kandeler, E. and Marschner, B. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry 35: 453-461. https://doi.org/10.1016/S0038-0717(02)00297-3
  22. Neher, D. 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33: 161-168.
  23. Park, H.H., Jung, C.E., Lee, J.H., Choi, S.S. and Lee, B.Y. 1996. Faunal list of oribatid mites (Acari: Oribatida) at the 44th (deciduous) and 45th (coniferous) compartment in Kwangreung. Korea. Korean Journal of Soil Zoology 1: 95-101.
  24. Peacock, A.D., Mullen, M.D., Ringelberg, D.B., Tyler, D.D., Hedrick, D.B., Gale, P.M. and White, D.C., 2001. Soil microbial community responses to dairy manure or ammonium nitrate applications, Soil Biology and Biochemistry 33: 1011-1019. https://doi.org/10.1016/S0038-0717(01)00004-9
  25. Reynolds, B.C., Crossley, D.A. and Hunter, M.D. 2003. Response of soil invertebrates to forest canopy inputs along a productivity gradient. Pedobiologia 47: 127-139. https://doi.org/10.1078/0031-4056-00176
  26. Rosenbrock, P., Busct, F. and Munch, J.C. 1995. Fungal succession and changes in the fungal degradation potential during the initial stage of litter decomposition in a black alder forest (Alnus glutinosa (L.) Gaertn.). European Journal of Soil Biology 31: 1-11.
  27. Ruess, L. 2003. Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology 5: 179-181. https://doi.org/10.1163/156854103767139662
  28. Wickings, K. and Grandy, A.S. 2011. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biology and Biochemistry 43: 351-358. https://doi.org/10.1016/j.soilbio.2010.10.023