• Title/Summary/Keyword: PLD process

Search Result 95, Processing Time 0.021 seconds

A Study on Development of PLD Process for PM OLED Device Manufacture (PM OLED 디바이스 제작을 위한 PLD 공정 개발에 관한 연구)

  • Lee, Eui-Sik;Lee, Byoung-Wook;Kim, Chang-Kyo;Hong, Jin-Su;Park, Sung-Hoon;Moon, Soon-Kwun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.264-266
    • /
    • 2005
  • Manufacture of OLED device used thermal evaporation method. However thermal evaporation method has many defect as thermal damage of substrate, difficult of dopant rate control and low utilization of organic materials. so we suggest PLD(Pulsed Laser Deposition) method that solution of these problems. PLD method has many advantage as without thermal damage, easy indicate of deposition rate per one pulse and good utilization of organic materials. In this paper we apply the PLD method for manufacture of device so we present high efficiency device manufacture using PLD method that has good deposition uniformity, surface rough and deposition rate.

  • PDF

Immunoadjuvant Effect of Platycodin D from Platycodon grandiflorum (Platycodin D 길경성분의 면역보조효과)

  • Han, Yongmoon
    • YAKHAK HOEJI
    • /
    • v.59 no.4
    • /
    • pp.170-176
    • /
    • 2015
  • In vaccine development, the major points may be induction of effective and increased levels of antibody production. This is especially the case when the antigenic sources are carbohydrates. For many years, thus, we have researched various types of formulations such as liposomal and conjugate vaccines. However, the fastidious formulation process and high costs are a problem. For this reason, there is currently a focus on utilizing immunoadjuvants. In this present study, we tested if platycodin D (PLD) from Platycodon Radix have immunoadjuvant activity against the cell wall of Candida albicans (CACW). The resulting data showed that in the murine model of antibody production, CACW combined with PLD [CACW/PLD/IFA] increased the production of antibodies specific to C. albicans when compared to the antibody production by [CACW/IFA]-induction, which was used as a negative control (P<0.05). In the case of [CACW/PLD/IFA], the antibody production was 1.4 times as that of the CFA. In addition, formulations containing either had a prolonged antibody inducing activity maintaining the initial titers of antibody as compared to the CFA formula. Cytokine profiling with the antisera displayed that the PLD produced both Th1 and Th2 immunoresponses, but Th1 dominant was much greater (P<0.05). Furthermore, [CACW/PLD/IFA] formula enhanced resistance of mice against disseminated candidiasis, whereas the CFA had no such effect. In conclusion, PLD has an immunologic activity, which is protective against the disease. Thus, PLD can be a goof candidate for a new immunoadjuvant in development of the fungal vaccine.

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

The Effects of the Processing Parameters on the Structure of IZO Transparent Thin Films Deposited by PLD Process (PLD를 이용한 IZO 투명전극의 결정구조에 영향을 미치는 공정인자에 대한 연구)

  • Kim, Pan-Young;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.317-318
    • /
    • 2007
  • In this study, transparent conducting oxide indium zinc oxide (IZO) thin films were deposited by pulsed laser deposition (PLD) Process as a function of the deposition time on the glass substrates at $400^{\circ}C$. The crystal structures, electrical and optical properties of IZO films analyzed by XRD, AFM, and UV spectrometer. High quality IZO thin film with the resistivity of $9.1{\times}10^{-4}$ ohm cm and optical transmittance over 85% was obtained for sample when deposition time was 15min. Thin films with the preferred orientations along the c axis were observed as the deposition time increased.

  • PDF

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

Electromagnetic properties of HTS coated conductors fabricated by PLD and MOD (PLD 및 MOD법으로 제조된 2세대 HTS 선재의 전자기 특성)

  • Oh, Sang-Soo;Hwang, Sun-Yuk;Song, Kyu-Jeong;Kang, Suk-Il;Ha, Dong-Woo;Ko, Rock-Kil;Park, Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.65-68
    • /
    • 2004
  • A lot of R&D efforts are being concentrated on the development of high performance HTS coated conductors(CC). Unlike the HTS Bi-2223 tape, a variety of processes have been tried to fabricate CC tapes. PLD and MOD are believed to be very effective methods, and high critical currents of long length CC tape have been reported. In this study, we prepared two kinds of YBCO CCs to evaluate electromagnetic property. One is YBCO tape deposited on IBAD template by PLD and the other is AMSC's MOD CC tape Critical current (Ic) in magnetic fields, its angular dependency, and n-value were measured and analyzed. Magnetic field property of Ic was appeared to be different due the fabrication process. MOD tape showed higher in-field property, n-value of both PLD and MOD tapes exponentially decreased with magnetic field. MOD tape showed higher n-value in whole magnetic fields.

  • PDF

Development of OLED manufacturing process using PLD method (PLD법에 의한 OLED 제작 공정 개발)

  • Kim, Chang-Kyo;Noh, Il-Ho;Jang, Suk-Won;Hong, Chin-Soo;Yang, Sung-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.598-602
    • /
    • 2004
  • Organic light entitling diode panel was fabricated using pulsed laser deposition (PLD) method Nd-YAG laser with Q-Switched and 355 nm pulse was used for the PLD. While TPD(N,N'-Di-[naphthaleny]-N, N'-diphenyl-benzidine) was used as a HTL(Hole transport layer), $Alq_3$(8-Hydroxyquinoline, Aluminum Salt) was used as EML/ETL(Emitting Layer/Electron Transport Layer) Organic pellet was fabricated and employed for the PLD method. The absorbances of the organic films were investigated and the measured absorbance values of TPD and $Alq_3$ films was 362 nm and 399 nm, respectively. The turn-on voltage of the OLED panel was 7.5 V and its luminance was $90\;cd/m^2$

  • PDF

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

A Study on the PLD Circuit Design of Pattern Generator (패턴 생성기의 PLD 회로설계에 관한 연구)

  • Roh, Young-Dong;Kim, Joon-Seek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.45-54
    • /
    • 2004
  • Usually, according as accumulation degree of semi-conductor element increases, dynamic mistake test time increases sharply, and use of pattern generator is essential at manufacturing process to solve these problem. In this paper, we designed the PLD(Programmable Logic Device) circuit of pattern generator to examine dynamic mistake of semi-conductor element. Such all item got result that is worth verified action of return trip and function through simulation, and satisfy.

Fabrication and Current Transport Properties of $TmBa_{2}Cu_{3}O_{7-x}$ Coated Conductor by PLD Process (PLD법을 이용한 $TmBa_{2}Cu_{3}O_{7-x}$ 초전도 선재 제작 및 전류전송특성 평가)

  • Kwon, O-Jong;Ko, Rock-Kil;Koo, Hyun;Bae, Sung-Hwan;Jung, Myung-Jin;Oh, Sang-Soo;Park, Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2209-2213
    • /
    • 2009
  • $REBa_{2}Cu_{3}O_{7-d}$(REBCO) coated conductors(REBCO CCs) have been studied for electric power applications which require high current density wires. As long as the critical transition temperature(Tc) is concerned, REBCO CCs with large $RE^{3+}$ ions have been expected to have better current transport properties than those with smaller $RE^{3+}$ ions. For this reason, REBCO's with large $RE^{3+}$ ions which include GdBCO, NdBCO and SmBCO have been mainly considered as the superconducting layer of CCs. On the other hand, REBCO's with smaller $RE^{3+}$ions are expected to have advantages in the fabrication process of CCs because of the lower melting temperature. But it has not yet been made clear which REBCO is the most suitable for the superconducting layer of CCs. In this study, we investigated the current transport properties of REBCO CCs with small $RE^{3+}$ ion and advantages of using that in the CC fabrication process. Thin films of TmBCO, which has smaller $RE^{3+}$ion than most other $RE^{3+}$ ions, were fabricated on buffered metal substrate as the superconducting layer of CC by PLD process. TmBCO CC shows critical current density (Jc (77 K, sf) = $2.3\;MA/cm^2$) high enough to be utilized for application in electric power devices. Compared with previous experiments using the same PLD system, deposition temperature was approximately $20^{\circ}C$ lower than NdBCO thin films on buffered metal substrates.