• 제목/요약/키워드: PLASMA SURFACE TREATMENT

검색결과 991건 처리시간 0.026초

저온 플라즈마 공정을 이용한 시멘트 보강용 탄소 섬유의 표면개질 (Surface Modification of Cement-Reinforcing Carbon Fibers by Low Temperature Plasma Process)

  • 조동련;김훈
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.361-365
    • /
    • 2005
  • $O_2$, $H_2O$, acrylic acid, diaminocyclohexane 등의 저온 플라즈마를 이용하여 시멘트 보강용 탄소 섬유 표면을 친수성으로 개질한 다음, 이에 대한 효과를 살펴보았다. 물과의 접촉각이 $75{\sim}80^{\circ}$ 정도로 소수성이던 표면이 친수성으로 변하여 접촉각이 $10^{\circ}$ 이하로까지 낮아졌으며, 이에 따라 흡습성 및 수용액에서 분산성이 크게 향상되었다. 또한, 섬유표면의 제타 포텐셜이 변하여 시멘트와 정전기적 인력이 향상됨으로써 시멘트의 결착도 향상과 함께 시멘트와의 결합이 57~124%까지 향상되었다.

ICP-CVD 방법을 이용한 탄소나노튜브의 제작 및 물성분석 (Characterization of structural properties of CNTs grown by ICP-CVD)

  • 장석모;김영도;박창균;엄현석;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1533-1535
    • /
    • 2002
  • Carbon nanotubes (CNTs) were grown with high density on a large area of Ni-coated silicon oxide substrates by using an inductively coupled plasma-chemical vapor deposition (ICP-CVD) of $C_2H_2$ at temperatures ranging from 600 to $700^{\circ}C$. The Ni catalyst was formed using an RF magnetron sputtering system with varying the operating pressure and exposure time of $NH_3$ plasma. The surface morphology of nickel catalyst films and CNTs was examined by SEM and AFM. The graphitized structure of CNTs was confirmed by Ramman spectra, SEM, and TEM. The growth of CNTs was observed to be strongly influenced by the surface morphology of Ni catalyst, which depended on the pre-treatment time and growth temperature. Dense CNTs with uniform-sized grains were successfully grown by ICP-CVD.

  • PDF

연면방전의 플라즈마 화학처리에 의한 유해가스제어 성능에 관한 연구 (A Study on the Control Performance for Hazardous Gases by Surface Discharge induced Plasma Chemical Process)

  • 이주상;김신도;김광영;김종호
    • 한국대기환경학회지
    • /
    • 제11권2호
    • /
    • pp.185-190
    • /
    • 1995
  • Recently, because of the worse of the air pollution, the excessive airtught of building and the inferiority of air conditioning system, the development of high efficiency air purification technology was enlarged to the environmental improvement of an indoor or a harmful working condition. The air purification technology has used chemical filters or charcoal filters or charcoal to remove hazardouse gaseous pollutants (SO$_{x}$, NO$_{x}$, NH$_{3}$, etc.) by air pollutant control technology, but they have many problems of high pressure loss, short life, wide space possession, and treatment of secondary wastes. For these reason, the object of reasearch shall be hazardous gaseous pollutants removal by the surface discharge induced plasma chemical process that is A.C. discharge of multistreams applied A.C. voltage and frequency between plane induced eletrode and line discharge eletrode of tungsten, platinum or titanium with a high purified alumina sheet having a film-like plane. As a result, the control performance for hazardous gaseous pollutants showed very high efficiency in the normal temperature and pressure. Also, after comtact oxidation decomposition of harmful gaseous pollutants, the remainded ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.rea.

  • PDF

열처리온도에 따른 다이아몬드상 카본박막의 구조적 특성변화 (Structural Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature)

  • 최원석;박문기;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.701-706
    • /
    • 2006
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the structural variation of the DLC films. The films were annealed at temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film and interface between film and substrate were observed by surface profiler, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), respectively. Raman and X-ray photoelectron spectroscopy (XPS) analysis showed that DLC films were graphitized ($I_D/I_G$, G-peak position and $sp^2/sp^3$ increased) ratio at higher annealing temperature. The variation of surface as a function of annealing treatment was verified by a AFM and contact angle method.

Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line

  • Rapuano, Bruce E.;Hackshaw, Kyle;Macdonald, Daniel E.
    • Journal of Periodontal and Implant Science
    • /
    • 제42권3호
    • /
    • pp.95-104
    • /
    • 2012
  • Purpose: The purpose of this study was to determine whether increasing the Ti6Al4V surface oxide negative charge through heat ($600^{\circ}C$) or radiofrequency plasma glow discharge (RFGD) pretreatment, with or without a subsequent coating with fibronectin, stimulated osteoblast gene marker expression in the MC3T3 osteoprogenitor cell line. Methods: Quantitative real-time polymerase chain reaction was used to measure changes over time in the mRNA levels for osteoblast gene markers, including alkaline phosphatase, bone sialoprotein, collagen type I (${\alpha}1$), osteocalcin, osteopontin and parathyroid hormone-related peptide (PTH-rP), and the osteoblast precursor genes Runx2 and osterix. Results: Osteoprogenitors began to differentiate earlier on disks that were pretreated with heat or RFGD. The pretreatments increased gene marker expression in the absence of a fibronectin coating. However, pretreatments increased osteoblast gene expression for fibronectin-coated disks more than uncoated disks, suggesting a surface oxide-mediated specific enhancement of fibronectin's bioactivity. Heat pretreatment had greater effects on the mRNA expression of genes for PTH-rP, alkaline phosphatase and osteocalcin while RFGD pretreatment had greater effects on osteopontin and bone sialoprotein gene expression. Conclusions: The results suggest that heat and RFGD pretreatments of the Ti6Al4V surface oxide stimulated osteoblast differentiation through an enhancement of (a) coated fibronectin's bioactivity and (b) the bioactivities of other serum or matrix proteins. The quantitative differences in the effects of the two pretreatments on osteoblast gene marker expression may have arisen from the unique physico-chemical characteristics of each resultant oxide surface. Therefore, engineering the Ti6Al4V surface oxide to become more negatively charged can be used to accelerate osteoblast differentiation through fibronectin-dependent and independent mechanisms.

산화갈륨 희생층을 이용한 AlGaN/GaN-on-Si HFET의 특성 개선 연구 (Improved Characteristics in AlGaN/GaN-on-Si HFETs Using Sacrificial GaOx Process)

  • 이재길;차호영
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.33-37
    • /
    • 2014
  • 본 논문에서는 AlGaN/GaN HFET의 누설전류 특성을 개선하고자 산화갈륨 희생층 공정을 이용한 새로운 패시베이션 공정을 제안하였다. 오믹 전극 형성시 고온 열처리 과정으로 인해 갈륨의 표면 손상이 불가피하다. 표면 손상을 방지하기 위해 보편적으로 선표면처리 공정을 사용하기도 하지만 이러한 방법만으로는 표면 손상을 완전히 없애기 어렵다. 본 연구에서 새롭게 제안된 산화갈륨 희생층을 이용한 공정 방법은 고온 열처리 후 손상된 표면에 $O_2$ 플라즈마 처리를 통해 산화갈륨층을 형성한 뒤, 염화수소를 이용하여 산화갈륨층을 식각한다. 우수한 상태의 표면 상태를 얻을 수 있었으며, 누설전류의 확연한 감소로 subthreshold slope이 개선되었을 뿐만 아니라 최대 드레인 전류 특성도 594 mA/mm에서 634 mA/mm로 증가하였다. 질화갈륨 희생층 공정의 효과를 분석하기 위해 X-선 광전자 분광법을 이용하여 질화갈륨의 표면 변화에 대해 살펴보았다.

PEO 처리조건에 따른 마그네슘 합금 AZ91의 표면특성변화에 관한 연구 (Effects of PEO Conditions on Surface Properties of AZ91 Mg Alloy)

  • 박경진;정명원;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.71-77
    • /
    • 2010
  • 마그네슘 합금은 낮은 밀도를 가지는 장점을 이용하여 자동차, 항공, 이동전화, 컴퓨터 등에 많이 쓰이고 있으나 기계적 강도가 낮고 내부식성이 좋지 않아 사용이 제한되었다. 마그네슘 합금 표면에 내식성 산화층을 형성하기 위하여 환경 친화적인 전해 플라즈마 산화법(PEO)을 연구에 사용하였다, PEO법은 수용약 중에서 플라즈마를 발생시켜 전기화학적 산화막을 형성시키는 방법이다. 인가전압과 전휴가 산화피마에 미치는 영향에 대하여 고찰하였다, 또한, 직류와 펄스전류를 사용하여 결과를 분석하였다. 펄스전류를 사용하고 정전류법을 사용한 경우에 치밀한 산화막을 얻을 수 있었다, 부식특성 분석을 위하여 양극산화분극방법을 이용하였다. 표면의 강도는 처리전의 AZ9ID에 비하여 5배 이상 증가하였다.

A Study on Modified Silicon Surface after $CHF_3/C_2F_6$ Reactive Ion Etching

  • Park, Hyung-Ho;Kwon, Kwang-Ho;Lee, Sang-Hwan;Koak, Byung-Hwa;Nahm, Sahn;Lee, Hee-Tae;Kwon, Oh-Joon;Cho, Kyoung-Ik;Kang, Young-Il
    • ETRI Journal
    • /
    • 제16권1호
    • /
    • pp.45-57
    • /
    • 1994
  • The effects of reactive ion etching (RIE) of $SiO_2$ layer in $CHF_3/C_2F_6$ on the underlying Si surface have been studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometer, Rutherford backscattering spectroscopy, and high resolution transmission electron microscopy. We found that two distinguishable modified layers are formed by RIE : (i) a uniform residue surface layer of 4 nm thickness composed entirely of carbon, fluorine, oxygen, and hydrogen with 9 different kinds of chemical bonds and (ii) a contaminated silicon layer of about 50 nm thickness with carbon and fluorine atoms without any observable crystalline defects. To search the removal condition of the silicon surface residue, we monitored the changes of surface compositions for the etched silicon after various post treatments as rapid thermal anneal, $O_2$, $NF_3$, $SF_6$, and $Cl_2$ plasma treatments. XPS analysis revealed that $NF_3$ treatment is most effective. With 10 seconds exposure to $NF_3$ plasma, the fluorocarbon residue film decomposes. The remained fluorine completely disappears after the following wet cleaning.

  • PDF

폴리이미드와 Cu/Ni층과의 계면결합력에 미치는 플라즈마 처리 시간 효과 (Effect of Plasma Treatment Times on the Adhesion of Cu/Ni Thin Film to Polyimide)

  • 우태규;박일송;정광희;전우용;설경원
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.657-663
    • /
    • 2011
  • This study represents the results of the peel strength and surface morphology according to the preprocessing times of polyimide (PI) in a Cu/Ni/PI structure flexible copper clad laminate production process based on the polyimide. Field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to analyze the surface morphology, crystal structure, and interface binding structure of sputtered Ni, Cu, and electrodeposited copper foil layers. The surface roughness of Ni, Cu deposition layers and the crystal structure of electrodeposited Cu layers were varied according to the preprocessing times. In the RF plasma times that were varied by 100-600 seconds in a preprocessing process, the preprocessing applied by about 300-400 seconds showed a homogeneous surface morphology in the metal layers and that also represented high peel strength for the polyimide. Considering the effect of peel strength on plastic deformation, preprocessing times can reasonably be at about 400 seconds.

Anodizing science of valve metals

  • Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.96.1-96.1
    • /
    • 2017
  • This presentation introduces anodizing science of typical valve metals of Al, Mg and Ti, based on the ionic transport through the andic oxide films in various electrolyte compositions. Depending on the electrolyte composition, metal ions and anions can migrate through the andic oxide film without its dielectric breakdown when point defects are present within the anodic oxide films under high applied electric field. On the other hand, if anodic oxide films are broken by local joule heating due to ionic migration, metal ions and anions can migrate through the broken sites and meet together to form new anodic films, known as plasma electrolytic oxidation (PEO) treatment. In this presentation, basics of conventional anodizing and PEO methods are introduced in detail, based on the ionic migration and movement mechanism through anodic oxide films by point defects and by local dielectric breakdown of anodic oxide films.

  • PDF