• 제목/요약/키워드: PL spectrum

검색결과 238건 처리시간 0.024초

실리콘산화막의 광루미니센스 변화에 관한 연구 (Changes of photoluminescence in silicon-oxide films)

  • 이재희
    • 한국진공학회지
    • /
    • 제9권3호
    • /
    • pp.216-220
    • /
    • 2000
  • 실리콘이온 주입 후 $1100^{\circ}C$에서 열처리된 실리콘 산화막에서 Si+ dose 량의 변화에 대한 광루미니센스의 변화를 관찰하였다. 모든 시료에서 가시광과 적외선영역의 광루미니센스를 관찰할 수 있었다. 광루미니센스의 peak는 7000 $\AA$, 7400 $\AA$, 그리고 8400 $\AA$ 근처에 있었으며, $Si^+$ dose량이 변함에 따라 peak의 위치와 강도가 변하였다. 이온 주입되는 $Si^+$ dose량이 $1\times10^{17}\textrm{cm}^2$일 때 광루미니센스에서 특이하게 3개의 peak를 가지고 있었으며 다른 $Si^+$ dose량의 시료에 비하여 큰 강도를 보여준다. 주입된 $Si^+$ 이온들이 실리콘 산화막내에 서 결함을 생성하여서 광루미니센스에 기여를 한다. $Si^+$ dose량과 열처리 시간 등을 변화시키면 높은 에너지의 Si 위주 radiative defect, 낮은 에너지의 Si 위주 radiative defect, 그리고 nonradiative defect들이 관계하는 것으로 생각되어져 왔으나 적절한 $Si^+$ dose량으로 더 많은 radiative defect를 생성시킬 수 있음을 확인하였다. $Si^+$ dose량을 조절함으로서 광루미니센스의 peak의 위치와 강도를 제어할 수 있을 것이다.

  • PDF

저온 photoluminescence 스펙트럼 및 형광체 합성에 관한 연구 (A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum)

  • 김수용
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.10-16
    • /
    • 2010
  • 본 논문에서는 ZnO와 $Ga_2O_3$ 분말을 1 : 1의 mole비로 혼합하고 여기에 Mn을 첨가하여 Ar 주입 상태와 진공 상태에서 조성된 $ZnGa_2O_4$ : Mn을 합성하였다. 제작된 $ZnGa_2O_4$ : Mn의 발광 스펙트럼 관찰을 하여 산소의 성분 변화가 발광 특성에 미치는 영향을 설명하였다. 또한 저온의 Photoluminescence(PL) 스펙트럼으로부터 Mn의 site symmetry가 발광 스펙트럼에 미치는 영향을 설명하였다.

캐스팅법으로 제작한 Poly(3-hexylthiophene)의 흡수스펙트럼에 따른 형광 특성 (Characteristics of Electronic Absorption Spectrum and Photoluminescence in Cast-Poly(3-hexylthiophene) Films)

  • 김주승;구할본;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 1998
  • Poly(3-hexylthiophene)(P3HT) was synthesized by use of FeCl$_3$ as a oxidizing agent at $25^{\circ}C$. The infrared spectrum of our polymer gave good evidence for the conjugation of 3-hexylthiophene monomer unit. P3HT contains the HT(head-to-tail) linkage larger than 64% based on NMR analysis. Electronic absorption and photoluminescence studies show that cast films of P3HT have three exciting state. Absorption spectrum was separated with three maximum peaks by Giese-French method and shifted to the shorter wavelength with increasing temperature. Separated absorption spectrum of P3HT is well adapted to PL peak appeared at longer wavelength. Low temperature PL spectrum is well separated at 669nm, 733nm and 812nm.

  • PDF

페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석 (Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions)

  • 조현아;이승민;노준홍
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Characterization of the ZnSe/ZnS Core Shell Quantum Dots Synthesized at Various Temperature Conditions and the Water Soluble ZnSe/ZnS Quantum Dot

  • Hwang, Cheong-Soo;Cho, Ill-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1776-1782
    • /
    • 2005
  • ZnSe/ZnS, UV-blue luminescent core shell quantum dots, were synthesized via a thermal decomposition reaction of organometallic zinc and solvent coordinated Selenium (TOPSe) in a hot solvent mixture. The synthetic conditions of the core (ZnSe) and the shell (ZnS) were independently studied at various reaction temperature conditions. The obtained colloidal nanocrystals at corresponding temperatures were characterized for their optical properties by UV-vis, room temperature solution photoluminescence (PL) spectroscopy, and further obtained powders were characterized by XRD, TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the ZnSe core was 300 ${^{\circ}C}$, and for the optimum shell capping, the temperature was 135 ${^{\circ}C}$. At this temperature, solution PL spectrum showed a narrow emission peak at 427 nm with a PL efficiency of 15%. In addition, the measured particle sizes for the ZnSe/ZnS nanocomposite via TEM were in the range of 5 to 12 nm. Furthermore, we have synthesized water-soluble ZnSe/ZnS nanoparticles by capping the ZnSe/ZnS hydrophobic surface with mercaptoacetate (MAA) molecules. For the obtained aqueous colloidal solution, the UV-vis spectrum showed an absorption peak at 250 nm, and the solution PL emission spectrum showed a peak at 425 nm, which is similar to that for hydrophobic quantum dot ZnSe/ZnS. However, the calculated PL efficiency was relatively low (0.1%) due to the luminescence quenching by water and MAA molecules. The capping ligand was also characterized by FT-IR spectroscopy, with the carbonyl stretching peak in the mercaptoacetate molecule appearing at 1575 $cm ^{-1}$. Finally, the particle sizes of the MAA capped ZnSe/ZnS were measured by TEM, showing a range of 12 to 17 nm.

CaS:Eu,S 전계발광소자의 특성 (Characteristics of CaS:Eu,S electroluminescent devices)

  • 조제철;유용택
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권6호
    • /
    • pp.752-758
    • /
    • 1995
  • Red emitting CaS:Eu,S electroluminescent(EL) device prepared at 550.deg. C by an electron-beam evaporation technique, demonstrated luminance of 175cd/m$\^$2/ and efficiency of 0.311m/W with 3kHz drive. Luminance was increased with the increase of applied voltage and frequency. From the results of the PL spectrum and the EL spectrum, the CaS:Eu, S device showed emission peak near 640nm resulted from the transition of EU$\^$2+/ 4f$\^$6/5d.rarw.4f$\^$7/. The capacitance of the phosphor layer from the Sawyer-Tower circuit was 10.5nF/cm$\^$2/.

  • PDF

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF

Excitation Energy Induced S-shaped PL behavior in Graphene Quantum Dots

  • 장민호;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.351.2-351.2
    • /
    • 2016
  • Graphene quantum dots (GQDs) have attracted much attention because of various advantages such as cost-effectiveness of synthesis, low toxicity, and photostability. The origins of photoluminescence (PL) in GQDs were suggested as the intrinsic states for localized sp2 carbon domains and the extrinsic states formed by oxygen-functional groups.[1,2] Nevertheless, it is still unclear to understand the information of electric band structure in GQD. Here, we observed excitation energy induced S-shaped PL behavior. The PL peak energy position shows an S-shaped shift (redshift-blueshift-redshift) as function of the excitation wavelengths. From various samples, we only observed S-shaped PL shift in the GQDs with both luminescent origins of intrinsic and extrinsic states. Therefore, this S-shaped PL shift is related to different weight of intrinsic and extrinsic states in PL spectrum depending on the excitation wavelengths. This would be the key result to understand the electric band structure of the GQDs and its derivatives.

  • PDF

다층 박막을 이용한 적색 유기 전기발광 소자의 제작 및 발광 특성 연구 (Preparation and Characteristics of Red Organic Electroluminescent Devices Using Multilayer Structure)

  • 황장환;김영관;손병청
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 1997
  • In this study, Eu(TTA)$_3$(phen) was synthesized and its films were prepared by vapor deposition method. Its films were characterized by UV-Vis absorption spectroscopy, Atomic Force Microscopy(AFM) and Photoluminescence(PL) measurements. Their electroluminescent(EL) characteristics were investigated by PL measurements, where a cell structure of glass substrate/ITO/Eu(TTA)$_3$(phen)/Al was employed. It was found that its films were well prepared without any decomposition and the film thickness could be controlled by adjusting the amount of Eu(TTA)$_3$(phen) in a boat. The EL spectrum of these films was almost the same as that of PL spectrum of these films.

  • PDF

실리콘산화막의 광루미니센스 온도의존성에 관한 연구 (Temperature Dependence of Photoluminescence in $SiO_2$)

  • 이재희
    • 한국진공학회지
    • /
    • 제10권2호
    • /
    • pp.247-251
    • /
    • 2001
  • 실리콘산화막에 $Si^+$이온을 주입하여 열처리를 한 후 상온에서 8K까지 온도를 변화시키며 PL을 측정하였다. 상온에서 50~80K까지는 PL intensity가 전체적으로 증가하였으며 50K 이하에서는 감소하였다. PL intensity가 증가하는 동안 peaks는 blue-shift가 일어났다. PL spectrum에서 peak를 보이는 파장에서 PL의 온도의존성을 측정하였다. 첫 번째 peak가 온도변화에 가장 민감하며 크기가 작은 peak일수록 온도의 영향을 적게 받는다. PL peak의 온도의존성을 분석하였다. 상온에서 50K 범위에서 PL intensity 대 1000/T그림에서 온도역수의 3차 함수로 fitting할 수 있었다. 온도가 내려갈수록 PL intensity가 증가하는 것을 nanocrystal 보다도 O위주 결함(Si-O-O)이나 Si위주 결함(Si-Si-O)들의 quantum size effect로 설명할 수 있었다.

  • PDF