Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.11.1776

Characterization of the ZnSe/ZnS Core Shell Quantum Dots Synthesized at Various Temperature Conditions and the Water Soluble ZnSe/ZnS Quantum Dot  

Hwang, Cheong-Soo (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University)
Cho, Ill-Hee (Department of Chemistry, Institute of Nanosensor and Biotechnology, Dankook University)
Publication Information
Abstract
ZnSe/ZnS, UV-blue luminescent core shell quantum dots, were synthesized via a thermal decomposition reaction of organometallic zinc and solvent coordinated Selenium (TOPSe) in a hot solvent mixture. The synthetic conditions of the core (ZnSe) and the shell (ZnS) were independently studied at various reaction temperature conditions. The obtained colloidal nanocrystals at corresponding temperatures were characterized for their optical properties by UV-vis, room temperature solution photoluminescence (PL) spectroscopy, and further obtained powders were characterized by XRD, TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the ZnSe core was 300 ${^{\circ}C}$, and for the optimum shell capping, the temperature was 135 ${^{\circ}C}$. At this temperature, solution PL spectrum showed a narrow emission peak at 427 nm with a PL efficiency of 15%. In addition, the measured particle sizes for the ZnSe/ZnS nanocomposite via TEM were in the range of 5 to 12 nm. Furthermore, we have synthesized water-soluble ZnSe/ZnS nanoparticles by capping the ZnSe/ZnS hydrophobic surface with mercaptoacetate (MAA) molecules. For the obtained aqueous colloidal solution, the UV-vis spectrum showed an absorption peak at 250 nm, and the solution PL emission spectrum showed a peak at 425 nm, which is similar to that for hydrophobic quantum dot ZnSe/ZnS. However, the calculated PL efficiency was relatively low (0.1%) due to the luminescence quenching by water and MAA molecules. The capping ligand was also characterized by FT-IR spectroscopy, with the carbonyl stretching peak in the mercaptoacetate molecule appearing at 1575 $cm ^{-1}$. Finally, the particle sizes of the MAA capped ZnSe/ZnS were measured by TEM, showing a range of 12 to 17 nm.
Keywords
ZnSe/ZnS quantum dot; Water soluble quantum dot; UV-blue emission; Semiconductor nanocrystal; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 22  (Related Records In Web of Science)
Times Cited By SCOPUS : 27
연도 인용수 순위
1 Alivisatos, P. J. Phys. Chem. 1996, 100, 13226   DOI   ScienceOn
2 Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706   DOI   ScienceOn
3 Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58   DOI   ScienceOn
4 Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47   DOI   ScienceOn
5 Heath, J. R. Acc. Chem. Res. 1999, 32
6 Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655   DOI   ScienceOn
7 Revaprasadu, N.; Malik, M. A.; O'Brien, P. J. Mater. Chem. 1998, 8, 1885   DOI   ScienceOn
8 Scmidt, M.; Grun, M.; Petillon, S.; Kurtz, E.; Klingshirn, C. Appl. Phys. Lett. 2000, 77, 85   DOI   ScienceOn
9 Shavel, A.; Gaponik, N.; Eychmuller, A. J. Phys. Chem. B 2004, 108, 5905   DOI   ScienceOn
10 Melhuish, W. H. J. Phys. Chem. 1961, 65, 229   DOI
11 Jun, Y.; Koo, J.; Cheon, J. Chem. Commun. 2000, 1243
12 Reiss, P.; Quemard, G.; Carayon, S.; Bleuse, J.; Chandezon, F.; Pron, A. Mater. Chem. Phys. 2004, 84, 10   DOI   ScienceOn
13 Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Matoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463   DOI   ScienceOn
14 Bruchez, S.; Moronne, M.; Gin, P.; Alivisatos, A. P. Science 1998, 281, 2013
15 Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861
16 Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122   DOI   ScienceOn
17 Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39   DOI   ScienceOn
18 Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845   DOI   ScienceOn
19 Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237   DOI
20 Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142   DOI   ScienceOn
21 Alivisatos, P. Science 1996, 271, 933   DOI   ScienceOn
22 Chung, C. K.; Lee, M. H. Bull. Korean Chem. Soc. 2004, 25(10), 1461   DOI   ScienceOn
23 Song, K. K.; Lee, S. H. Curr. Appl. Phys. 2001, 1, 169   DOI   ScienceOn
24 Ludolph, B.; Malik, M. A.; O'Brien, P.; Revaprasadu, N. Chem. Commun. 1998, 913
25 Chan, W. C. W.; Nie, S. Science 1998, 281, 2016   DOI