• Title/Summary/Keyword: PKC

Search Result 518, Processing Time 0.028 seconds

Induction of the Nuclear Proto-Oncogene c-fos by the Phorbol Ester TPA and c-H-Ras

  • Kazi, Julhash U.;Soh, Jae-Won
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.462-467
    • /
    • 2008
  • TPA is known to cooperate with an activated Ras oncogene in the transformation of rodent fibroblasts, but the biochemical mechanisms responsible for this effect have not been established. In the present study we used c-fos promoter-luciferase constructs as reporters, in transient transfection assays, in NIH3T3 cells to assess the mechanism of this cooperation. We found a marked synergistic interaction between TPA and a transfected v-Ha-ras oncogene in the activation of c-fos promoter and SRE. SRE has binding sites for TCF and SRF. A dominant-negative Ras (ras-N17) inhibited the TPA-Ras synergy by blocking the PKC-MAPK-TCF pathway. Dominant-negative RhoA and Rac1 (but not Cdc42Hs) inhibited the TPA-Ras synergy by blocking the Ras-Rho-SRF signaling pathway. Constitutively active $PKC{\alpha}$ and $PKC{\varepsilon}$ showed synergy with v-Ras. These results suggest that the activation of two distinct pathways such as Ras-Raf-ERK-TCF pathway and Rho-SRF pathway are responsible for the induction of c-fos by TPA and Ras in mitogenic signaling pathways.

Effects of Phorbol Estr, Gö-6976, Ro-31-8220 and Röttlerin on Basal Mucin Release from Airway Goblet Cells

  • Heo, Ho-Jin;Lee, Hyun-Jae;Seok, Jeong-Ho;Seo, Un-Kyo;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.251-255
    • /
    • 2005
  • In the present study, we tried to investigate whether protein kinase C (PKC) activator, phorbol 12-Myristate 13-Acetate (PMA), and PKC inhibitors, $G\"{o}-6976$, Ro-31-8220 and rottlerin significantly affect basal mucin relesed from cultured airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3H$-glucosamine for 24 hr and chased for 30 min in the presence of each agent to assess the effects on $^3H$-mucin release. The results were as follows: (1) PMA increased mucin release from cultured HTSE cells, during 30 min of treatment period; (2) However, $G\"{o}-6976$, Ro-31-8220 and rottlerin did not significantly affect mucin release, during 30 min of treatment period. This finding suggests, at least in part, that PKC might playa minor role in the signaling pathways involved in basal - physiological or constitutive - mucin release from airway goblet cells, although further studies are needed.

Amphetamine-induced ERM Proteins Phosphorylation Is through $PKC{\beta}$ Activation in PC12 Cells

  • Jeong, Ha-Jin;Kim, Jeong-Hoon;Jeon, Song-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.245-249
    • /
    • 2011
  • Amphetamine, a synthetic psychostimulant, is transported by the dopamine transporter (DAT) to the cytosol and increases the exchange of extracellular amphetamine by intracellular dopamine. Recently, we reported that the phosphorylation levels of ezrin-radixin-moesin (ERM) proteins are regulated by psychostimulant drugs in the nucleus accumbens, a brain area important for drug addiction. However, the significance of ERM proteins phosphorylation in response to drugs of abuse has not been fully investigated. In this study, using PC12 cells as an in vitro cell model, we showed that amphetamine increases ERM proteins phosphorylation and protein kinase C (PKC) ${\beta}$ inhibitor, but not extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinases (PI3K) inhibitors, abolished this effect. Further, we observed that DAT inhibitor suppressed amphetamine-induced ERM proteins phosphorylation in PC12 cells. These results suggest that $PKC{\beta}$-induced DAT regulation may be involved in amphetmaine-induced ERM proteins phosphorylation.

Effects of Different Dietary Oil and d-Limonene on Histopathological and Biochemical Changes in Experimental Hepatocarcinogenesis (식이지방의 종류 및 d-Limonene 투여가 간 발암과정에 미치는 영향)

  • 이미숙;김정희
    • Journal of Nutrition and Health
    • /
    • v.33 no.1
    • /
    • pp.23-32
    • /
    • 2000
  • The purpose of this study was to investigate the effcts of n-3, n-6 fatty arid and d-limonene on histopathological and biochemical changes in experimental rat hepatocarcinogenesis. To attain the above objectives, weanling Sprague-Dawley female rats were intraperitoneally injected twice with a dose of diethylnitrosamine(DEN, 50mg/kg body weight) and after 1 week 0.05% phenobarbital was provided with water. Sardine oil rich in n-3 fatty acids and corn oil rich in n-6 fatty acids were fed at 15% by weight and 5% d-limonene was added to the diet in each group. Ten weeks or 20 weeks after DEN treatment, rats were sacrifirced. The formation of glutathione S-transferase placental form positive(GST-P$\^$+/) foci was significantly decreased by the treatment of either sardine oil or d-limonene HMG-CoA reductase activity was not affected by dietary oils and d-limonene. Protein kinase C (PKC) activity was decreased by either sardine oil or d-limonene. Particularly d-limonene decreased the membrane PKC activity. Membrane Cholesterol/Phospholipid(Chol/PL) ratio was significantly decreased by d-limonene in sardine oil group. The data showed that GST-P$\^$+/ foci number was positively correlated with membrane PKC activity and serum cholesterol and negatively correlated with liver cholesterol level. These results suggest informations about the correlation between histopathological and biochemical changes such as cholesterol metabolism and PKC activity in experimental hepatocarcinogenesis and thereby can elucidate the possible mechanism related to the cancer inhibition.(Korean J Nutrition 33(1) : 23-32, 2000)

  • PDF

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Redifferentiation of Dedifferentiated Chondrocytes on Chitosan Membranes and Involvement of PKCα and P38 MAP Kinase

  • Lee, Yoon Ae;Kang, Shin-Sung;Baek, Suk-Hwan;Jung, Jae-Chang;Jin, Eun Jung;Tak, Eun Nam;Sonn, Jong Kyung
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • To investigate the effects of chitosan on the redifferentiation of dedifferentiated chondrocytes, we used chondrocytes obtained from a micromass culture system. Micromass cultures of chick wing bud mesenchymal cells yielded differentiated chondrocytes, but these dedifferentiated during serial monolayer subculture. When the dedifferentiated chondrocytes were cultured on chitosan membranes they regained the phenotype of differentiated chondrocytes. Expression of protein kinase $C{\alpha}$ ($PKC{\alpha}$) increased during chondrogenesis, decreased during dedifferentiation, and increased again during redifferentiation. Treatment of the cultures with phorbol 12-myristate 13-acetate (PMA) inhibited redifferentiation and down-regulated $PKC{\alpha}$. In addition, the expression of p38 mitogen-activated protein (MAP) kinase increased during redifferentiation, and its inhibition suppressed redifferentiation. These findings establish a culture system for producing chondrocytes, point to a new role of chitosan in the redifferentiation of dedifferentiated chondrocytes, and show that $PKC{\alpha}$ and p38 MAP kinase activities are required for chondrocyte redifferentiation in this model system.

The Anti-Migratory Effect of Cirsium japonicum Pharmacopuncture in C6 Glioma Cell (대계 약침액의 C6 신경교종 세포에 대한 이주 억제 효과)

  • Park, Juyeon;Lee, Kangpa;Chang, Haeryong;Moon, Jinyoung
    • Korean Journal of Acupuncture
    • /
    • v.30 no.4
    • /
    • pp.212-219
    • /
    • 2013
  • Objectives : Cirsium japonicum is a traditional Korean medicine that has been used in the treatment of inflammatory diseases such as appendicitis, hepatitis, pulmonary abscess and tumor. The aim of study was to elucidate anti-migratory activity of CJP(Cirsium japonicum pharmacopuncture) through regulation of inflammatory mediators in C6 glioma cell. Methods : Nitric oxide(NO) production was determined by using nitrite assay. The cell migration was analyzed by wound-healing assay and Boyden chamber assay. The expression levels of iNOS, and protein kinase C(PKC)-${\alpha}$ were measured by western blotting assay. Results : CJP showed a significant decrease on NO production. Moreover, glioma cell migration was effectively suppressed by CJP. Furthermore, CJP inhibited the expressions of iNOS and PKC-${\alpha}$ in C6 glioma cells. Conclusions : These results suggest that CJP inhibits glioma cell migration and iNOS expression through regulation of PKC-${\alpha}$. Therefore, it is expected that CJP could be an effective agents for blocking malignant progression of glioma.

An Asymmetric Key-Based Security Architecture for Wireless Sensor Networks

  • Haque, Md. Mokammel;Pathan, Al-Sakib Khan;Hong, Choong-Seon;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.265-277
    • /
    • 2008
  • In spite of previous common assumptions about the incompatibility of public key cryptography (PKC) schemes with wireless sensor networks (WSNs), recent works have shown that they can be utilized for such networks in some manner. The major challenge of employing a PKC-based scheme in a wireless sensor network is posed by the resource limitations of the tiny sensors. Considering this sensor feature, in this paper we propose an efficient PKC-based security architecture with relatively lower resource requirements than those of previously proposed PKC schemes for WSN. In addition, our scheme aims to provide robust security in the network. Our security architecture comprises two basic components; a key handshaking scheme based on simple, linear operations and the derivation of a decryption key by a receiver node. Our architecture enables node-to-base-station and node-to-node secure communications. Analysis and simulation results show that our proposed architecture ensures a good level of security for network communications, and can be effectively implemented with the limited computational, memory, and energy budgets of current-generation sensor nodes.

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

  • Choi, Hee-Jung;Park, Young-Guk;Kim, Cheorl-Ho
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.138-144
    • /
    • 2007
  • Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with $G{\ddot{o}}6976$, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with $G{\ddot{o}}6976$ and U0126. PMA stimulated the promoter activity of the 5'-flanking region from -177 to -83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around -143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors $G{\ddot{o}}6976$ and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.

Effect of Staurosporine on the Long-term Secretion of Catecholamines Induced by Various Secretagogues in Cultured Bovine Adrenal Medullary Chromaffin Cells

  • Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.503-510
    • /
    • 2001
  • Long-term treatment of cultured bovine adrenal medullary chromaffin (BAMC) cells with arachidonic acid $(100\;{\mu}M),$ angiotesnin II (100 nM), prostaglandin $E_2\;(PGE_2;\;10\;{\mu}M),$ veratridine $(2\;{\mu}M)$ or KCl (55 mM) for 24 hrs increased both norepinephrine and epinephrine levels in the supernatant. Pretreatment with staurosporine (10 nM), a protein kinase C (PKC) inhibitor, completely blocked increases of norepinephrine and epinephrine secretion induced by arachidonic acid, angiotensin II, $PGE_2,$ veratridine or KCl. In addition, K252a, another PKC inhibitor whose structure is similar to that of staurosporine, effectively attenuated both norepinephrine and epinephrine secretion induced by arachidonic acid. However, K252a did not affect the catecholamine secretion induced by angiotensin II, $PGE_2,$ veratridine or KCl. Our results suggest that staurosporine may inhibit long-term catecholamine secretion induced by various secretagogues in a mechanism other than inhibiting PKC signaling. Furthermore, long-term secretion of catecholamines induced by arachidonic acid may be dependent on PKC pathway.

  • PDF