Redifferentiation of Dedifferentiated Chondrocytes on Chitosan Membranes and Involvement of PKCα and P38 MAP Kinase

  • Lee, Yoon Ae (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Kang, Shin-Sung (Daegu Center, Korea Basic Science Institute) ;
  • Baek, Suk-Hwan (Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University) ;
  • Jung, Jae-Chang (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Jin, Eun Jung (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Tak, Eun Nam (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Sonn, Jong Kyung (Department of Biology, College of Natural Sciences, Kyungpook National University)
  • Received : 2006.06.01
  • Accepted : 2007.04.19
  • Published : 2007.08.31

Abstract

To investigate the effects of chitosan on the redifferentiation of dedifferentiated chondrocytes, we used chondrocytes obtained from a micromass culture system. Micromass cultures of chick wing bud mesenchymal cells yielded differentiated chondrocytes, but these dedifferentiated during serial monolayer subculture. When the dedifferentiated chondrocytes were cultured on chitosan membranes they regained the phenotype of differentiated chondrocytes. Expression of protein kinase $C{\alpha}$ ($PKC{\alpha}$) increased during chondrogenesis, decreased during dedifferentiation, and increased again during redifferentiation. Treatment of the cultures with phorbol 12-myristate 13-acetate (PMA) inhibited redifferentiation and down-regulated $PKC{\alpha}$. In addition, the expression of p38 mitogen-activated protein (MAP) kinase increased during redifferentiation, and its inhibition suppressed redifferentiation. These findings establish a culture system for producing chondrocytes, point to a new role of chitosan in the redifferentiation of dedifferentiated chondrocytes, and show that $PKC{\alpha}$ and p38 MAP kinase activities are required for chondrocyte redifferentiation in this model system.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Aiedeh, K., Gianasi, E., Orienti, I., and Zecchi, V. (1997) Chitosan microcapsules as controlled release systems for insulin. J. Microencapsul. 14, 567-576 https://doi.org/10.3109/02652049709006810
  2. Ahrens, P. B., Solursh, M., and Reiter, R. S. (1997) Stagerelated capacity for limb chondrogenesis in cell culture. Dev. Biol. 60, 69-82
  3. Benya, P. D. and Shaffer, J. D. (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215-224 https://doi.org/10.1016/0092-8674(82)90027-7
  4. Binette, F., McQuaid, D. P., Haudenschild, D. R. Yeager, P. C., McPherson, J. M., et al. (1998) Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J. Orthop. Res. 16, 207-216 https://doi.org/10.1002/jor.1100160208
  5. Bonaventure, J., Kadhom, N., Cohen-Solal, L., Ng, K. H., Bourguignon, J., et al. (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212, 97-104 https://doi.org/10.1006/excr.1994.1123
  6. Brine, C. J., Sandford, P. A., and Zikakis, J. P. (eds.) (1992) Advances in Chitin and Chitosan, pp. 1-491, Elsevier Applied Science, London
  7. Cancedda, R., Descalzi Cancedda, F., and Castagnola, P. (1995) Chondrocyte differentiation. Int. Rev. Cytol. 159, 265-358
  8. Jin, E. J., Lee, S. Y., Choi, Y. A., Jung, J. C., Bang, O. S., et al. (2006) BMP-2-Enhanced chondrogenesis involves p38 MAPKmediated down-regulation of Wnt-7a pathway. Mol. Cells 22, 353-359
  9. Kim, S. J., Ju, J. W., Oh, C. D., Yoon, Y. M., Song, W. K., et al. (2002) ERK-1/2 and p38 kinase oppositely regulate nitric oxide- induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J. Biol. Chem. 277, 1332-1339 https://doi.org/10.1074/jbc.C100442200
  10. Kosher, R. A., Gay, S. W., Kamanitz, J. R., Kulyk, W. M., Rodgers, B. J., et al. (1986) Cartilage proteoglycan core protein gene expression during limb cartilage differentiation. Dev. Biol. 118, 112-117 https://doi.org/10.1016/0012-1606(86)90078-3
  11. Lahiji, A., Sohrabi, A., Hungerford, D. S., and Frondoza, C. G. (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res. 51, 586-595 https://doi.org/10.1002/1097-4636(20000915)51:4<586::AID-JBM6>3.0.CO;2-S
  12. Lemare, F., Steimberg, N., Le Griel, C., Demignot, S., and Adolphe, M. (1998) Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1beta. J. Cell. Physiol. 176, 303-313 https://doi.org/10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S
  13. Lim, Y. B., Kang, S. S., Park, T. K., Lee, Y. S., Chun, J. S., et al. (2000) Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase Calpha signaling. Biochem. Biophys. Res. Commun. 273, 609-613
  14. Liu, H., Lee, Y. W., and Dean, M. (1998) Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta 1425, 505-515 https://doi.org/10.1016/S0304-4165(98)00105-6
  15. Loty, S., Forest, N., Boulekbache, H., and Sautier, J. M. (1995) Cytochalasin D induces changes in cell shape and promotes in vitro chondrogenesis: a morphological study. Biol. Cell. 83, 149-161
  16. Martin, I., Vunjak-Novakovic, G., Yang, J., Langer, R., and Freed, L. E. (1999) Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp. Cell Res. 253, 681-688
  17. Martiny-Baron, G., Kazanietz, M. G., Mischak, H., Blumberg, P. M., Kochs, G., et al. (1993) Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6970. J. Biol. Chem. 268, 9194-9197
  18. Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., et al. (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613-5619 https://doi.org/10.1074/jbc.275.1.9
  19. Prudden, J. F., Migel, P., Hanson, P., Friedrich, L., and Balassa, L. (1970) The discovery of a potent pure chemical woundhealing accelerator. Am. J. Surg. 119, 560-564 https://doi.org/10.1016/0002-9610(70)90003-6
  20. Ryves, W. J., Evans, A. T., Olivier, A. R. Parker, P. J., and Evans, F. J. (1991) Activation of the PKC-isotypes alpha, beta 1, gamma, delta and epsilon by phorbol esters of different biological activities. FEBS Lett. 288, 5-9
  21. Sandell, L. J. and Adler, P. (1999) Developmental patterns of cartilage. Front. Biosci. 4. D731-742
  22. Schulze-Tanzil, G., de Souza, P., Villegas Castrejon, H., John, T., Merker, H.-J., et al. (2002) Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell Tissue Res. 308, 371-379
  23. Shakibaei, M. (1995) Integrin expression on epiphyseal mouse chondrocytes in monolayer culture. Histol. Histopathol. 10, 339-349
  24. Shepherd, R., Reader, S., and Falshaw, A. (1997) Chitosan functional properties. Glycoconj. J. 14, 535-542 https://doi.org/10.1023/A:1018524207224
  25. Stanton, L.-A., Underhill, T. M., and Beier, F. (2003) MAP kinases in chondrocyte differentiation. Dev. Biol. 263, 165-175 https://doi.org/10.1016/S0012-1606(03)00321-X
  26. Suh, J. K. and Matthew, H. W. T. (2000) Application of chitosan- based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21, 2589-2598 https://doi.org/10.1016/S0142-9612(99)00127-1
  27. Thenet, S., Benya, P. D., Demignot, S., Feunteun, J., and Adolphe, M. (1992) SV40-immortalization of rabbit articular chondrocytes: alteration of differentiated functions. J. Cell. Physiol. 150, 158-167 https://doi.org/10.1002/jcp.1041500121
  28. Yang, M. S., Chang, S. H., Sonn, J. K., Lee, Y. S., Kang, S. S., et al. (1998) Regulation of chondrogenic differentiation of mesenchymes by protein kinase C alpha. Mol. Cells 8, 266-271
  29. Yoon, Y. M., Kim, S. J., Oh, C. D., Ju, J. W., Song, W. K., et al. (2002) Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signalregulated protein kinase. J. Biol. Chem. 277, 8412-8420 https://doi.org/10.1074/jbc.M110608200